YAN Lei, LIU Liansheng, LI Shijie, YANG Daoxue, LIU Wei. Damage evolution of weakly-weathered granite under uniaxial cyclic impact[J]. Explosion And Shock Waves, 2020, 40(5): 053303. doi: 10.11883/bzycj-2019-0354
Citation: YAN Lei, LIU Liansheng, LI Shijie, YANG Daoxue, LIU Wei. Damage evolution of weakly-weathered granite under uniaxial cyclic impact[J]. Explosion And Shock Waves, 2020, 40(5): 053303. doi: 10.11883/bzycj-2019-0354

Damage evolution of weakly-weathered granite under uniaxial cyclic impact

doi: 10.11883/bzycj-2019-0354
  • Received Date: 2019-09-15
  • Rev Recd Date: 2019-10-23
  • Available Online: 2020-04-25
  • Publish Date: 2020-05-01
  • In order to study the mechanical properties and damage evolution mechanism of weakly-weathered granite under blasting stress wave, single and constant-velocity cyclic impact tests on the granite specimens at different velocities were carried out using a modified split Hopkinson pressure bar (SHPB) with the diameter of 50 mm. The results show that the damage threshold determined by the energy method in single-impact tests can be used in the cyclic-impact tests. The stress relaxation platform exists in the crack propagation stage of the weakly-weathered granite at different strain rates, and it becomes more obvious with the increase of strain rate. The peak stress is positively correlated with strain rate. In the cyclic impact, the maximum stress and strain are positively correlated with the impact velocity, and negatively correlated with the total number of cumulative impacts; the damage evolution can be divided into three stages taking on an inverted-S shape, and a damage evolution model with two parameters is established by it. The fitting effect of the model is ideal and has physical significance; the damage degree at the median point and the relative number of cycles can be calculated by using the parameters α and β in the model, are positively correlated with the impact velocity. The damage evolution models described by different damage variables are different, so it is necessary to define the damage variables reasonably.
  • [1]
    沈滔, 李海东, 靳杨, 等. 赣南地区花岗岩风化壳中稀土元素特征探讨 [J]. 稀土, 2016, 37(2): 62–67. DOI: 10.16533/J.CNKI.15-1099/TF.201602010.

    SHEN T, LI H D, JIN Y, et al. Discussion on the characteristics of rare earth elements from weathering crust of granites in south Jiangxi [J]. Chinese Rare Earths, 2016, 37(2): 62–67. DOI: 10.16533/J.CNKI.15-1099/TF.201602010.
    [2]
    LI H B, XIA X, LI J C, et al. Rock damage control in bedrock blasting excavation for a nuclear power plant [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 210–218. DOI: 10.1016/j.ijrmms.2010.11.016.
    [3]
    李地元, 孙小磊, 周子龙, 等. 多次冲击荷载作用下花岗岩动态累计损伤特性 [J]. 实验力学, 2016, 31(6): 827–835. DOI: 10.7520/1001-4888-16-009.

    LI D Y, SUN X L, ZHOU Z L, et al. On the dynamic accumulated damage characteristics of granite subjected to repeated impact load action [J]. Journal of Experimental Mechanics, 2016, 31(6): 827–835. DOI: 10.7520/1001-4888-16-009.
    [4]
    YAN L, YI W H, LIU L S, et al. Blasting-induced permeability enhancement of ore deposits associated with low-permeability weakly weathered granites based on the split Hopkinson pressure bar [J]. Geofluids, 2018, 2018: 4267878. DOI: 10.1155/2018/4267878.
    [5]
    ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
    [6]
    金解放, 李夕兵, 殷志强, 等. 循环冲击下波阻抗定义岩石损伤变量的研究 [J]. 岩土力学, 2011, 32(5): 1385–1393; 1410. DOI: 10.3969/j.issn.1000-7598.2011.05.017.

    JIN J F, LI X B, YIN Z Q, et al. A method for defining rock damage variable by wave impedance under cyclic impact loadings [J]. Rock and Soil Mechanics, 2011, 32(5): 1385–1393; 1410. DOI: 10.3969/j.issn.1000-7598.2011.05.017.
    [7]
    金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.

    JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
    [8]
    金解放, 李夕兵, 邱灿, 等. 岩石循环冲击损伤演化模型及静载荷对损伤累积的影响 [J]. 岩石力学与工程学报, 2014, 33(8): 1662–1671. DOI: 10.13722/j.cnki.jrme.2014.08.017.

    JIN J F, LI X B, QIU C, et al. Evolution model for damage accumulation of rock under cyclic impact loadings and effect of static loads on damage evolution [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1662–1671. DOI: 10.13722/j.cnki.jrme.2014.08.017.
    [9]
    王春, 唐礼忠, 程露萍, 等. 三维高静载频繁动态扰动时岩石损伤特性及本构模型 [J]. 岩土力学, 2017, 38(8): 2286–2296; 2305. DOI: 10.16285/j.rsm.2017.08.017.

    WANG C, TANG L Z, CHENG L P, et al. Damage characteristics and constitutive model of rock under three-dimensional high static load and frequent dynamic disturbance [J]. Rock and Soil Mechanics, 2017, 38(8): 2286–2296; 2305. DOI: 10.16285/j.rsm.2017.08.017.
    [10]
    朱晶晶, 李夕兵, 宫凤强, 等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究 [J]. 岩土工程学报, 2013, 35(3): 531–539.

    ZHU J J, LI X B, GONG F Q, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531–539.
    [11]
    LI S H, ZHU W C, NIU L L, et al. Dynamic characteristics of green sandstone subjected to repetitive impact loading: phenomena and mechanisms [J]. Rock Mechanics and Rock Engineering, 2018, 51(6): 1921–1936. DOI: 10.1007/s00603-018-1449-6.
    [12]
    王志亮, 杨辉, 田诺成. 单轴循环冲击下花岗岩力学特性与损伤演化机理 [J]. 哈尔滨工业大学学报, 2020, 52(2): 59–66. DOI: 10.11918/201811085.

    WANG Z L, YANG H, TIAN N C. Mechanical property and damage evolution mechanism of granite under uniaxial cyclic impact [J]. Journal of Harbin Institute of Technology, 2020, 52(2): 59–66. DOI: 10.11918/201811085.
    [13]
    DAI F, HUANG S, XIA K W, et al. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 657–666. DOI: 10.1007/s00603-010-0091-8.
    [14]
    LI X B, ZHOU Z L, LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: 10.1016/j.ijrmms.2007.08.013.
    [15]
    LI X B, LOK T S, ZHAO J, et al. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(7): 1055–1060. DOI: 10.1016/S1365-1609(00)00037-X.
    [16]
    宋力, 胡时胜. SHPB数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373. DOI: 10.11883/1001-1455(2005)04-0368-06.

    SONG L, HU S S. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373. DOI: 10.11883/1001-1455(2005)04-0368-06.
    [17]
    王晓燕, 卢芳云, 林玉亮. SHPB实验中端面摩擦效应研究 [J]. 爆炸与冲击, 2006, 26(2): 134–139. DOI: 10.11883/1001-1455(2006)02-0134-06.

    WANG X Y, LU Y F, LING Y L. Study on interfacial friction effect in the SHPB tests [J]. Explosion and Shock Waves, 2006, 26(2): 134–139. DOI: 10.11883/1001-1455(2006)02-0134-06.
    [18]
    WANG P, YIN T B, LI X B, et al. Dynamic properties of thermally treated granite subjected to cyclic impact loading [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 991–1010. DOI: 10.1007/s00603-018-1606-y.
    [19]
    葛修润, 任建喜, 蒲毅彬, 等. 岩石疲劳损伤扩展规律CT细观分析初探 [J]. 岩土工程学报, 2001, 23(2): 191–195. DOI: 10.3321/j.issn:1000-4548.2001.02.013.

    GE X R, REN J X, PU Y B, et al. Primary study of CT real-time testing of fatigue meso-damage propagation law of rock [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 191–195. DOI: 10.3321/j.issn:1000-4548.2001.02.013.
    [20]
    王宇, 李晓, 武艳芳, 等. 脆性岩石起裂应力水平与脆性指标关系探讨 [J]. 岩石力学与工程学报, 2014, 33(2): 264–275. DOI: 10.13722/j.cnki.jrme.2014.02.003.

    WANG Y, LI X, WU Y F, et al. Research on relationship between crack initiation stress level and brittleness indices for brittle rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 264–275. DOI: 10.13722/j.cnki.jrme.2014.02.003.
    [21]
    梁昌玉, 李晓, 王声星, 等. 岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究 [J]. 岩石力学与工程学报, 2012, 31(9): 1830–1838. DOI: 10.3969/j.issn.1000-6915.2012.09.014.

    LIANG C Y, LI X, WANG S X, et al. Experimental investigations on rate-dependent stress-strain characteristics and energy mechanism of rock under uniaixal compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1830–1838. DOI: 10.3969/j.issn.1000-6915.2012.09.014.
    [22]
    NICKSIAR M, MARTIN C D. Crack initiation stress in low porosity crystalline and sedimentary rocks [J]. Engineering Geology, 2013, 154: 64–76. DOI: 10.1016/j.enggeo.2012.12.007.
    [23]
    宫凤强, 王进, 李夕兵. 岩石压缩特性的率效应与动态增强因子统一模型 [J]. 岩石力学与工程学报, 2018, 37(7): 1586–1595. DOI: 10.13722/j.cnki.jrme.2017.1239.

    GONG F Q, WANG J, LI X B. The rate effect of compression characteristics and a unified model of dynamic increasing factor for rock materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1586–1595. DOI: 10.13722/j.cnki.jrme.2017.1239.
    [24]
    LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [25]
    李树刚, 陈高峰, 双海清, 等. 加载速率和初始损伤对砂岩能量演化影响的试验研究 [J]. 采矿与安全工程学报, 2019, 36(2): 373–380. DOI: 10.13545/j.cnki.jmse.2019.02.021.

    LI S G, CHEN G F, SHUANG H Q, et al. Experimental study on effect of loading rate and initial damage on energy evolution of sandstone [J]. Journal of Mining and Safety Engineering, 2019, 36(2): 373–380. DOI: 10.13545/j.cnki.jmse.2019.02.021.
    [26]
    文志杰, 田雷, 蒋宇静, 等. 基于应变能密度的非均质岩石损伤本构模型研究 [J]. 岩石力学与工程学报, 2019, 38(7): 1332–1343. DOI: 10.13722/j.cnki.jrme.2018.1125.

    WEN Z J, TIAN L, JIANG Y J, et al. Research on damage constitutive model of inhomogeneous rocks based on strain energy density [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1332–1343. DOI: 10.13722/j.cnki.jrme.2018.1125.
    [27]
    ZHANG J X, WONG T F, DAVIS D M. Micromechanics of pressure‐induced grain crushing in porous rocks [J]. Journal of Geophysical Research, 1990, 95(B1): 341–352. DOI: 10.1029/JB095iB01p00341.
    [28]
    XIAO J Q, DING D X, XU G, et al. Inverted S-shaped model for nonlinear fatigue damage of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 643–648. DOI: 10.1016/j.ijrmms.2008.11.002.
    [29]
    LIU Y, DAI F, DONG L, et al. Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 47–68. DOI: 10.1007/s00603-017-1327-7.
    [30]
    XIAO J Q, DING D X, JIANG F L, et al. Fatigue damage variable and evolution of rock subjected to cyclic loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 461–468. DOI: 10.1016/j.ijrmms.2009.11.003.
    [31]
    YAN L, LIU L S, ZHANG S H, et al. Testing of weakly weathered granites of different porosities using a split Hopkinson pressure bar technique [J]. Advances in Civil Engineering, 2018, 2018: 5267610.
  • Relative Articles

    [1]CHU Huaibao, CHEN Luyang, YANG Xiaolin, WANG Donghui, WEI Haixia, SUN Bo. Experimental study on impact failure law of water-saturated granite with initial damage[J]. Explosion And Shock Waves, 2025, 45(1): 013101. doi: 10.11883/bzycj-2024-0036
    [2]Characteristics of fracture propagation and permeability response of sandstone under cyclic impact effect[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0346
    [3]Study on dynamic mechanical behavior of single-jointed rock mass under cyclic impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0353
    [4]YANG Hui, WANG Kehui, ZHOU Gang, LI Ming, WU Haijun, DAI Xianghui, DUAN Jian. Dynamic mechanical properties and anti-penetration performance of granite with different weathering degrees[J]. Explosion And Shock Waves, 2024, 44(10): 101403. doi: 10.11883/bzycj-2024-0017
    [5]ZHANG Rongrong, SHEN Yonghui, MA Dongdong, PING Qi, YANG Yi. Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact[J]. Explosion And Shock Waves, 2024, 44(8): 081443. doi: 10.11883/bzycj-2023-0449
    [6]WANG Zhiliang, WANG Dawei, WANG Shumin, WU Xutao. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading[J]. Explosion And Shock Waves, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243
    [7]WANG Yu, ZHAI Cheng, TANG Wei, SHI Kelong. Dynamic response and energy dissipating characteristics of shale under cyclic impact loadings[J]. Explosion And Shock Waves, 2023, 43(6): 063102. doi: 10.11883/bzycj-2022-0248
    [8]LI Bin, ZHU Zhiwu, LI Tao. Impact dynamic mechanical properties of frozen soil with freeze-thaw cycles[J]. Explosion And Shock Waves, 2022, 42(9): 091411. doi: 10.11883/bzycj-2021-0475
    [9]NIE Zhengyue, DING Yuqing, SONG Jiangjie, PENG Yong, LIN Yuliang, CHEN Rong. A study of parameters of Kong-Fang fluid elastoplastic damage material model for Shandong granite[J]. Explosion And Shock Waves, 2022, 42(9): 091409. doi: 10.11883/bzycj-2021-0363
    [10]ZHANG Tao, YU Liyuan, SU Haijian, LUO Ning, WEI Jiangbo. Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation[J]. Explosion And Shock Waves, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089
    [11]CAO Xiang, TANG Jiani, WANG Zhu, ZHENG Yuxuan, ZHOU Fenghua. Effect of damage evolution on the fragmentation process of ductile metals[J]. Explosion And Shock Waves, 2020, 40(1): 013102. doi: 10.11883/bzycj-2019-0041
    [12]JIANG Zhaoxiu, GAO Guangfa, WANG Yonggang. Discrete element simulation on dynamic response and damage evolution in porous ferroelectric ceramics under shock compression[J]. Explosion And Shock Waves, 2020, 40(5): 053103. doi: 10.11883/bzycj-2019-0410
    [13]TANG Lizhong, LIU Chang, WANG Chun, CHEN Yingyi, SHEN Fan. Dynamic influence of frequent dynamic disturbance on high-energy rock mass during confining pressure unloading[J]. Explosion And Shock Waves, 2019, 39(6): 065202. doi: 10.11883/bzycj-2018-0137
    [14]Wang Lili, Hu Shisheng, Yang Liming, Dong Xinlong, Wang Hui. Talk about dynamic strength and damage evolution[J]. Explosion And Shock Waves, 2017, 37(2): 169-179. doi: 10.11883/1001-1455(2017)02-0169-11
    [15]Wang Yunfei, Zheng Xiaojuan, Jiao Huazhe, Cheng Fengbin, Zhao Hongbo. Energy evolution mechanism and energy yield criterion in granite's failure process[J]. Explosion And Shock Waves, 2016, 36(6): 876-882. doi: 10.11883/1001-1455(2016)06-0876-07
    [16]Zhong Guosheng, Ao Liping, Fu Yuhua. Model experimental studies of vibration effect and damage evolution of tunnel's surrounding rock under cyclic blasting excavation[J]. Explosion And Shock Waves, 2016, 36(6): 853-860. doi: 10.11883/1001-1455(2016)06-0853-08
    [17]JinJie-fang, LiXi-bing, ChangJun-ran, TaoWei, QiuCan. Stress-straincurveandstresswavecharacteristicsof rocksubjectedtocyclicimpactloading[J]. Explosion And Shock Waves, 2013, 33(6): 613-619. doi: 10.11883/1001-1455(2013)06-0613-07
    [18]SONG Shun-cheng, CAI Hong-nian, WANG Fu-chi. Sliding surface algorithm and projectile damage evolving for elastic-plastic projectiles impacting concrete targets[J]. Explosion And Shock Waves, 2006, 26(2): 163-168. doi: 10.11883/1001-1455(2006)02-0163-06
  • Cited by

    Periodical cited type(14)

    1. 邱明亮. 微风化花岗岩隧道围岩损伤破裂特征及爆破工艺研究. 铁道建筑技术. 2024(03): 166-170 .
    2. 王志亮,汪大为,汪书敏,巫绪涛. 循环冲击下大理岩的损伤力学行为及能量耗散特性. 爆炸与冲击. 2024(04): 49-61 . 本站查看
    3. 郭连军,马昊阳,徐景龙,王雪松,邓琪昌,李萍丰. 循环冲击作用下岩石能量耗散特征及损伤研究. 矿业研究与开发. 2023(05): 106-112 .
    4. 王宇,翟成,唐伟,石克龙. 循环冲击载荷作用下页岩动力学响应及能量耗散特征. 爆炸与冲击. 2023(06): 76-89 . 本站查看
    5. 钟文,朱文韬,曾鹏,黄震,王晓军,郭钟群,胡凯建. 浸矿开采对离子型稀土基岩力学特性的影响研究. 岩土力学. 2022(06): 1481-1492 .
    6. 杨砚,刘连生,曾鹏,易文华,钟抒亮,柴耀光,陶铁军. 不同倾角隐伏结构面类岩石材料动力学破坏特性试验研究. 中南大学学报(自然科学版). 2022(08): 3178-3190 .
    7. 潘博,汪旭光,郭连军,徐振洋,闫大洋. 组合静载条件下SHPB试件长径比优选研究. 爆破. 2022(03): 1-9 .
    8. 贾健,陶铁军,田兴朝,娄乾星,谢财进,何军,虞培忠,王志涛. 动静荷载作用下灰岩和白云岩破坏机理研究. 工程爆破. 2022(06): 1-7+41 .
    9. 陆华,王建国,马肖彤,马艳,王辉. 循环荷载下大孔隙红砂岩的动力响应及损伤研究. 工程爆破. 2021(01): 45-52 .
    10. 薛永明,戴兵,陈科旭,吴文渊,邓金翔,贺桂成. 厚壁圆筒花岗岩在动静耦合循环冲击作用下的动态力学特性试验研究. 矿业研究与开发. 2021(05): 74-79 .
    11. 刘伟,曾鹏,闫雷,杨砚,刘连生. 循环冲击下弱风化岩石力学特性与渗透率演化. 煤炭学报. 2021(06): 1855-1863 .
    12. 谢磊,李庆华,徐世烺. 超高韧性水泥基复合材料多次冲击压缩性能及本构关系. 工程力学. 2021(12): 158-171 .
    13. 苏宏明,王磊,陈世官,秦越. 中低应变率加载下弱胶结软岩动力学特性. 工程爆破. 2020(05): 21-29 .
    14. 王志,秦文静,张丽娟. 含裂隙岩石注浆加固后静动态力学性能试验研究. 岩石力学与工程学报. 2020(12): 2451-2459 .

    Other cited types(15)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (4857) PDF downloads(61) Cited by(29)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return