GUO Chun, GUO Shangsheng, QIAN Jianping, GU Wenbin. Numerical simulation on shock critical initiation velocity of cylindrical covered charge by multiple fragment impacts[J]. Explosion And Shock Waves, 2020, 40(6): 062301. doi: 10.11883/bzycj-2019-0391
Citation: GUO Chun, GUO Shangsheng, QIAN Jianping, GU Wenbin. Numerical simulation on shock critical initiation velocity of cylindrical covered charge by multiple fragment impacts[J]. Explosion And Shock Waves, 2020, 40(6): 062301. doi: 10.11883/bzycj-2019-0391

Numerical simulation on shock critical initiation velocity of cylindrical covered charge by multiple fragment impacts

doi: 10.11883/bzycj-2019-0391
  • Received Date: 2019-10-12
  • Rev Recd Date: 2020-03-05
  • Available Online: 2020-05-25
  • Publish Date: 2020-06-01
  • In order to investigate the shock initiation of missile warhead (cylindrical covered charge) by multiple tungsten spherical fragment impacts under actual combat circumstance, based on the analysis of single fragment impact, the numerical simulations were carried out by using AUTODYN-3D software. The influence on the shock initiation characteristics of different number, distance separation (impact angle θ and axial spherical center distance l), time separation were analyzed, and the critical initiation velocity of covered Comp B was obtained by the up-down method. The obtained simulation results show that, the critical initiation velocity decreases with the tungsten fragments number increase and the distance separation decrease. The critical initiation velocity of cylindrical covered charge impacted by six fragments synchronously is about 50% compare to the single fragment. The cylindrical covered charge is more difficult than plane covered charge to detonate by double fragments when the impact velocity below the critical velocity of a single fragment. The critical initiation velocity decreases initially and then increases with the increase of time separation when fragments impacting asynchronously on the cylindrical covered charge. The minimum critical initiation velocity of cylindrical covered charge impacted by double fragments synchronously is about 95% comparinge with that of impacted by double fragments asynchronously. For |θ2|<|θ1| (θ1 is the impact angle of the first fragment, θ2 is the impact angle of the second fragment), the cylindrical covered charge is easy to detonate by double fragments asynchronously. The results provide the reference for cumulative damage assessment of cylindrical covered charge by multiple fragment impacts.
  • [1]
    居仙春. 炮射布阵式悬浮弹幕特性及其协同反导效能研究[D]. 南京: 南京理工大学, 2014: 7−8; 34.
    [2]
    JAMES H R. Critical energy criterion for the shock initiation of explosives by projectile impact [J]. Propellants, Explosives, Pyrotechnics, 1988, 13(2): 35–41. DOI: 10.1002/prep.19880130202.
    [3]
    HELD M. Initiation phenomena with shaped charge jets [C] // 9th International Symposium on Detonation. Portland, Oregon, US: OCNR, 1989: 1416−1426.
    [4]
    陈卫东, 张忠, 刘家良. 破片对屏蔽炸药冲击起爆的数值模拟和分析 [J]. 兵工学报, 2009, 30(9): 1187–1191. DOI: 10.3321/j.issn:1000-1093.2009.09.007.

    CHEN W D, ZHANG Z, LIU J L. Numerical simulation and analysis of shock initiation of shielded explosive impacted by fragments [J]. Acta Armamentarii, 2009, 30(9): 1187–1191. DOI: 10.3321/j.issn:1000-1093.2009.09.007.
    [5]
    方青, 卫玉章, 张克明, 等. 射弹倾斜撞击带盖板炸药引发爆轰的条件 [J]. 爆炸与冲击, 1997, 17(2): 153–158.

    FANG Q, WEI Y Z, ZHANG K M, et al. On the projectile oblique-impact initiation conditions for explosive covered with a plate [J]. Explosion and Shock Waves, 1997, 17(2): 153–158.
    [6]
    张先锋, 赵有守, 陈惠武. 射弹冲击引爆带壳炸药临界条件 [J]. 弹道学报, 2006, 18(4): 57–59. DOI: 10.3969/j.issn.1004-499X.2006.04.016.

    ZHANG X F, ZHAO Y S, CHEN H W. The critical condition of shelled explosive initiated by projectile [J]. Journal of Ballistics, 2006, 18(4): 57–59. DOI: 10.3969/j.issn.1004-499X.2006.04.016.
    [7]
    王树山, 李朝君, 马晓飞, 等. 钨合金破片对屏蔽装药撞击起爆的实验研究 [J]. 兵工学报, 2001, 22(2): 189–191. DOI: 10.3321/j.issn:1000-1093.2001.02.012.

    WANG S S, LI C J, MA X F, et al. An experimental study on the initiation of covered charge impacted by tungsten alloy fragments [J]. Acta Armamentarii, 2001, 22(2): 189–191. DOI: 10.3321/j.issn:1000-1093.2001.02.012.
    [8]
    梁争峰, 袁宝慧. 破片撞击起爆屏蔽B炸药的数值模拟和实验 [J]. 火炸药学报, 2006, 29(1): 5–9. DOI: 10.3969/j.issn.1007-7812.2006.01.002.

    LIANG Z F, YUAN B H. Numerical simulation and experimental study of the initiation of shielded composition B impacted by fragment [J]. Chinese Journal of Explosives & Propellants, 2006, 29(1): 5–9. DOI: 10.3969/j.issn.1007-7812.2006.01.002.
    [9]
    李文彬, 王晓鸣, 赵国志, 等. 多破片命中时炸药的冲击起爆研究 [J]. 南京理工大学学报(自然科学版), 2004, 28(1): 5–8. DOI: 10.3969/j.issn.1005-9830.2004.01.002.

    LI W B, WANG XM, ZHAO G Z, et al. Study on shock initiation of explosive by the impact of multi-fragment [J]. Journal of Nanjing University of Science and Technology, 2004, 28(1): 5–8. DOI: 10.3969/j.issn.1005-9830.2004.01.002.
    [10]
    LUECK M, HEINE A, WICKERT M. Numerical analysis of the initiation of high explosives by interacting shock waves due to multiple fragment impact [C] // 26th International Symposium Ballistics. Miami, FL, USA: NDIA, 2011: 73−81.
    [11]
    贾宪振, 陈松, 杨建, 等. 双破片同时撞击对B炸药冲击起爆的数值模拟研究 [J]. 高压物理学报, 2011, 25(5): 469–474. DOI: 10.11858/gywlxb.2011.05.014.

    JIA X Z, CHEN S, YANG J, et al. Numerical study of explosives initiation by simultaneous impact from two fragments [J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 469–474. DOI: 10.11858/gywlxb.2011.05.014.
    [12]
    梁斌, 冯高鹏, 魏雪婷. 多枚破片冲击引爆带盖板炸药数值模拟分析 [J]. 弹箭与制导学报, 2013, 33(6): 62–66; 69. DOI: 10.3969/j.issn.1673-9728.2013.06.018.

    LIANG B, FENG G P, WEI X T. Numerical simulation on shock initiation of composition explosive of cover board subjected to multi-fragment [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(6): 62–66; 69. DOI: 10.3969/j.issn.1673-9728.2013.06.018.
    [13]
    宋浦, 梁安定. 破片对柱壳装药的撞击毁伤试验研究 [J]. 弹箭与制导学报, 2006, 26(1): 87–88, 92. DOI: 10.3969/j.issn.1673-9728.2006.01.029.

    SONG P, LIANG A D. Experimental investigation on charges covered shell damaged by fragments impact [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 87–88, 92. DOI: 10.3969/j.issn.1673-9728.2006.01.029.
    [14]
    江增荣, 李向荣, 李世才, 等. 预制破片对战斗部冲击起爆数值模拟 [J]. 弹道学报, 2009, 21(1): 9–13.

    JIANG Z R, LI X R, LI S C, et al. Numerical simulation on shock initiation of performed fragment to warhead [J]. Journal of Ballistics, 2009, 21(1): 9–13.
    [15]
    辛建国, 徐豫新, 李超, 等. 破片冲击柱面薄壳装药实验 [J]. 兵工学报, 2014, 35(S2): 222–227.

    XIN J G, XU Y X, LI C, et al. Experiment of fragment impact on cylinder charge covered with thin shell [J]. Acta Armamentarri, 2014, 35(S2): 222–227.
    [16]
    王昕, 蒋建伟, 王树有, 等. 钨球对柱面带壳装药的冲击起爆数值模拟研究 [J]. 兵工学报, 2017, 38(8): 1498–1505. DOI: 10.3969/j.issn.1000-1093.2017.08.006.

    WANG X, JIANG J W, WANG S Y, et al. Numerical simulation on the initiation of cylindrical covered charge impacted by tungsten sphere fragment [J]. Acta Armamentarri, 2017, 38(8): 1498–1505. DOI: 10.3969/j.issn.1000-1093.2017.08.006.
    [17]
    AUTODYN, Users manual [Z]. California: Century Dynamics Corporation, 2005.
  • Relative Articles

    [1]WANG Shuaifeng, WANG Rui, ZHAO Hui, GUO Zhihui. Design method for impact resistance of circular concrete-filled double-skin steel tubular members based on dynamic increase factor and equivalent single DoF system[J]. Explosion And Shock Waves, 2022, 42(10): 103302. doi: 10.11883/bzycj-2021-0467
    [2]Qiu Xianyang, Shi Xiuzhi, Zhou Jian, Huang Dan, Chen Xin. On vibration reduction effect of short millisecond blasting by high-precision detonator based on HHT energy spectrum[J]. Explosion And Shock Waves, 2017, 37(1): 107-113. doi: 10.11883/1001-1455(2017)01-0107-07
    [3]Liu Na, Chen Yibing. High order spectral volume method for multi-component flows[J]. Explosion And Shock Waves, 2017, 37(1): 114-119. doi: 10.11883/1001-1455(2017)01-0114-06
    [4]Li Yueqiang, Yi Na, Xi Feng. Assessment on single degree of freedom modelin steel column analysis of anti-detonation[J]. Explosion And Shock Waves, 2017, 37(5): 957-963. doi: 10.11883/1001-1455(2017)05-0957-07
    [5]Tan Ru-mei, Zhang Qi, Zhang Bo. Effects of ignition delay time on characteristic parameters of aluminum dust explosion[J]. Explosion And Shock Waves, 2014, 34(1): 17-22. doi: 10.11883/1001-1455(2014)01-0017-06
    [6]ZHONG Guo-sheng, AO Li-ping, ZHAO Kui, . Influence of explosion parameters on energy distribution of blasting vibration signal based on wavelet packet energy spectrum[J]. Explosion And Shock Waves, 2009, 29(3): 300-305. doi: 10.11883/1001-1455(2009)03-0300-06
    [7]LI Hong-tao, LU Wen-bo, SHU Da-qiang, YANG Xing-guo. An energy analysis method for blast-induced seismic based on power spectrum[J]. Explosion And Shock Waves, 2009, 29(5): 492-496. doi: 10.11883/1001-1455(2009)05-0492-05
    [8]LI Hong-tao, LU Wen-bo, SHU Da-qiang, YANG Xing-guo. Response spectrum of blasting vibration induced by tunnel excavation[J]. Explosion And Shock Waves, 2008, 28(4): 331-335. doi: 10.11883/1001-1455(2008)04-0331-05
    [9]TIAN Yun-sheng. Analysis of evolutionary power spectra density functionof ground motion induced by blasting seismic[J]. Explosion And Shock Waves, 2007, 27(1): 7-11. doi: 10.11883/1001-1455(2007)01-0007-05
  • Cited by

    Periodical cited type(6)

    1. 何理,殷琳,钟冬望,张鑫玥,赵永明,熊海涛,陈莎莎,NJAMBA Bruno. 爆破振动强度、波形与频谱研究综述:预测及主动控制. 爆破. 2024(03): 189-204+262 .
    2. 张文涛,汪海波,高朋飞,王梦想,吕闹,杨帆,程兵. 基于PCA-WOA-XGBoost的露天矿山爆破振动峰值振速预测. 工程爆破. 2024(06): 155-167+177 .
    3. 林之岳,黎俊华,王道林. 基于爆破振速演变规律的采场安全分析. 黄金. 2023(03): 5-11 .
    4. 王春华,陈洪凯. 危岩集合体激振特性试验研究. 华东交通大学学报. 2022(01): 12-18 .
    5. 吕江,赵晖,姚康,史吏. 隧洞爆破引起路堑高边坡振动的1/3倍频程实测分析. 浙江工业大学学报. 2021(03): 282-289 .
    6. 张彪. 孤石深孔爆破对临近竖井的振动影响研究. 爆破. 2021(02): 95-99 .

    Other cited types(9)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (4367) PDF downloads(95) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return