Volume 40 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
YANG Renshu, LI Weiyu, YANG Guoliang, MA Xinmin. Experimental study on the blasting effects of rich-iron ore with different explosives[J]. Explosion And Shock Waves, 2020, 40(6): 065201. doi: 10.11883/bzycj-2019-0396
Citation: YANG Renshu, LI Weiyu, YANG Guoliang, MA Xinmin. Experimental study on the blasting effects of rich-iron ore with different explosives[J]. Explosion And Shock Waves, 2020, 40(6): 065201. doi: 10.11883/bzycj-2019-0396

Experimental study on the blasting effects of rich-iron ore with different explosives

doi: 10.11883/bzycj-2019-0396
  • Received Date: 2019-10-16
  • Rev Recd Date: 2020-03-18
  • Available Online: 2020-05-25
  • Publish Date: 2020-06-01
  • In order to investigate the influence of different explosives type on the blasting effects, three kinds of explosives with the same quality were used to carry out blasting test on iron ore samples. The fractal dimension of surface crack and fragment size distribution of specimens were comparatively studied, and then the damage degree and blasting effects of specimens were quantitatively compared and evaluated. At the same time, the differences of blasting effects are analyzed theoretically from the angle of explosion stress wave superposition, energy release and energy transfer. The results are as follows. (1) Both loose charge and mixed charge will cause the uniformity of the explosion stress field distribution to deteriorate. (2) The greater the explosion heat, the greater the energy released after explosion; the higher the wave impedance matching, the higher the energy transfer efficiency after explosive explosion. (3) In the selection of explosives in blasting engineering, three parameters of explosive including density, explosion heat and detonation velocity should be considered; Explosives with a high degree of wave impedance matching and appropriate explosion heat should be selected so that the bulk and small pieces generated after blasting are less.
  • loading
  • [1]
    王青, 任凤玉. 采矿学[M]. 2版. 北京: 冶金工业出版社, 2011: 5−32.
    [2]
    ZHANG Y Q, HAO H, LU Y. Anisotropic dynamic damage and fragmentation of rock materials under explosive loading [J]. International Journal of Engineering Science, 2003, 41(9): 917–929. DOI: 10.1016/S0020-7225(02)00378-6.
    [3]
    何天贵, 马建军, 赵东坡. 爆破大块率与爆破主参数之间的函数关系 [J]. 武汉科技大学学报(自然科学版), 2005, 28(3): 254–256. DOI: 10.3969/j.issn.1674-3644.2005.03.014.

    HE T G, MA J J, ZHAO D P. Functional relationship between rate of blasting chunk and major parameters [J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2005, 28(3): 254–256. DOI: 10.3969/j.issn.1674-3644.2005.03.014.
    [4]
    邹定祥. 计算露天矿台阶爆破块度分布的三维数学模型 [J]. 爆炸与冲击, 1984, 4(3): 48–59.

    ZOU D X. A three dimensional mathematical model in calculating the rock fragmentation distribution of bench blasting in the open pit [J]. Explosion and Shock Waves, 1984, 4(3): 48–59.
    [5]
    ZHU Z M, XIE H P, MOHANTY B. Numerical investigation of blasting-induced damage in cylindrical rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 111–121. DOI: 10.1016/j.ijrmms.2007.04.012.
    [6]
    冯春, 李世海, 郑炳旭, 等. 基于连续-非连续单元方法的露天矿三维台阶爆破全过程数值模拟 [J]. 爆炸与冲击, 2019, 39(2): 024201. DOI: 10.11883/bzycj-2017-0393.

    FENG C, LI S H, ZHENG B X, et al. Numerical simulation on complete process of three-dimensional bench blasting in an open-pit mine based on CDEM [J]. Explosion and Shock Waves, 2019, 39(2): 024201. DOI: 10.11883/bzycj-2017-0393.
    [7]
    TAYLOR L M, PREECE D S. Simulation of blasting induced rock motion using spherical element models [J]. Engineering Computations, 1992, 9(2): 243–252. DOI: 10.1108/eb023863.
    [8]
    钮强, 熊代余. 炸药岩石波阻抗匹配的试验研究 [J]. 有色金属, 1988, 40(4): 13–17.

    NIU Q, XIONG D Y. A study of acoustic impedance match between explosives and rocks [J]. Nonferrous Metals, 1988, 40(4): 13–17.
    [9]
    杨小林. 炸药岩石阻抗匹配与爆炸应力、块度的试验研究 [J]. 煤炭学报, 1991, 16(1): 89–96.

    YANG X L. Study of blasting stress, size and matched impedance between explosive and rock [J]. Journal of China Coal Society, 1991, 16(1): 89–96.
    [10]
    FARAMARZI F, MANSOURI H, EBRAHIMI F M A. A rock engineering systems based model to predict rock fragmentation by blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 82–94. DOI: 10.1016/j.ijrmms.2012.12.045.
    [11]
    潘鹏飞, 孙厚广, 韩忠和, 等. 利用钻孔注水试验测试爆区周边岩体损伤场的可行性研究 [J]. 岩土力学, 2016, 37(S1): 323–328. DOI: 10.16285/j.rsm.2016.S1.043.

    PAN P F, SUN H G, HAN Z H, et al. Feasibility study about testing rock damage distribution surrounding blasting area by water seepage in borehole [J]. Rock and Soil Mechanics, 2016, 37(S1): 323–328. DOI: 10.16285/j.rsm.2016.S1.043.
    [12]
    任凤玉, 王文杰, 韩智勇. 无底柱分段崩落法扇形炮孔爆破机理研究与应用 [J]. 东北大学学报(自然科学版), 2006, 27(11): 1267–1270. DOI: 10.3321/j.issn:1005-3026.2006.11.023.

    REN F Y, WANG W J, HAN Z Y. The blasting mechanism of fan-patterned holes and its application in sublevel caving [J]. Journal of Northeastern University (Natural Science), 2006, 27(11): 1267–1270. DOI: 10.3321/j.issn:1005-3026.2006.11.023.
    [13]
    谭卓英, 张建国. 露天深孔爆破大块率与爆破参数之间的关系研究 [J]. 爆破, 1999, 16(4): 15–20.

    TAN Z Y, ZHANG J G. Study on the relationships between boulder yield (BY) and Borehole blasting parameters in open pits [J]. Blasting, 1999, 16(4): 15–20.
    [14]
    王新民, 赵彬, 王贤来, 等. 基于BP神经网络的凿岩爆破参数优选 [J]. 中南大学学报(自然科学版), 2009, 40(5): 1411–1416.

    WANG X M, ZHAO B, WANG X L, et al. Optimization of drilling and blasting parameters based on back-propagation neural network [J]. Journal of Central South University (Science and Technology), 2009, 40(5): 1411–1416.
    [15]
    刘慧, 冯叔瑜. 炸药单耗对爆破块度分布影响的理论探讨 [J]. 爆炸与冲击, 1997, 17(4): 359–362.

    LIU H, FENG S Y. Theoretical research of the effect on the blasting fragmentation distribution from the explosive specific charge [J]. Explosion and Shock Waves, 1997, 17(4): 359–362.
    [16]
    蔡建德, 郑炳旭, 汪旭光, 等. 多种规格石料开采块度预测与爆破控制技术研究 [J]. 岩石力学与工程学报, 2012, 31(7): 1462–1468. DOI: 10.3969/j.issn.1000-6915.2012.07.020.

    CAI J D, ZHENG B X, WANG X G, et al. Research on blasting control technique and block size prediction of different dimensions stones [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1462–1468. DOI: 10.3969/j.issn.1000-6915.2012.07.020.
    [17]
    葛树高. 矿岩可爆性评价与合理炸药单耗的确定 [J]. 有色金属, 1995, 47(2): 11–15.

    GE S G. Estimation of rock blastibility and determination of adaptive explosive consumption [J]. Nonferrous Metals, 1995, 47(2): 11–15.
    [18]
    谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 2005.
    [19]
    杨仁树, 许鹏. 爆炸作用下介质损伤破坏的分形研究 [J]. 煤炭学报, 2017, 42(12): 3065–3071.

    YANG R S, XU P. Fractal study of media damage under blasting loading [J]. Journal of China Coal Society, 2017, 42(12): 3065–3071.
    [20]
    SANCHIDRIÁN J A, SEGARRA P, LÓPEZ L M. Energy components in rock blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 130–147. DOI: 10.1016/j.ijrmms.2006.05.002.
    [21]
    赵安平, 冯春, 郭汝坤, 等. 节理特性对应力波传播及爆破效果的影响规律研究 [J]. 岩石力学与工程学报, 2018, 37(9): 2027–2036. DOI: 10.13722/j.cnki.jrme.2018.0270.

    ZHAO A P, FENG C, GUO R K, et al. Effect of joints on blasting and stress wave propagation [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2027–2036. DOI: 10.13722/j.cnki.jrme.2018.0270.
    [22]
    冷振东, 卢文波, 范勇, 等. 侧向起爆条件下的爆炸能量分布及其对破岩效果的影响 [J]. 爆炸与冲击, 2017, 37(4): 661–669. DOI: 10.11883/1001-1455(2017)04-0661-09.

    LENG Z D, LU W B, FAN Y, et al. Explosion energy distribution by side initiation and its effects on rock fragmentation [J]. Explosion and Shock Waves, 2017, 37(4): 661–669. DOI: 10.11883/1001-1455(2017)04-0661-09.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (5161) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return