Volume 40 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
LIU Chong, DU Yang, LIANG Jianjun, ZHANG Peili, MENG Hong. Large eddy simulation of gasoline/air mixture explosion in a semi-confined space with bilateral branches[J]. Explosion And Shock Waves, 2020, 40(6): 064202. doi: 10.11883/bzycj-2019-0408
Citation: LIU Chong, DU Yang, LIANG Jianjun, ZHANG Peili, MENG Hong. Large eddy simulation of gasoline/air mixture explosion in a semi-confined space with bilateral branches[J]. Explosion And Shock Waves, 2020, 40(6): 064202. doi: 10.11883/bzycj-2019-0408

Large eddy simulation of gasoline/air mixture explosion in a semi-confined space with bilateral branches

doi: 10.11883/bzycj-2019-0408
  • Received Date: 2019-10-23
  • Rev Recd Date: 2020-03-25
  • Publish Date: 2020-06-01
  • In order to study the gasoline/air mixture explosion characteristics in semi-confined spaces with branched structures, a large eddy simulation model based on WALE turbulence model and the Zimont premixed flame model was established. The explosion characteristics of semi-confined space with bilateral branches ware studied through the simulation. The applicability of the established model for the calculation of gasoline/air mixture explosion in semi-confined spaces with bilateral branches is verified by comparing of flame shape, flame propagation velocity and dynamic overpressure. The flow field, flame behavior and overpressure variation during the explosion process were analyzed through the numerical simulation results and the reasons for the formation of “splash-like” flame were pointed out, and the following results were obtained. (1) Before the flame propagates into the branch pipes, two symmetric vortex structure with opposite rotation directions are generated at the junctions of the main pipe and two branch pipes, and develop toward the inside of the branch pipes as the flame propagates continuously. (2) When the flame propagates into branch pipes, the flow field established in the early stage determines the shape of the flame. The flame front forms a “splash-like” flame under the action of the vortex structure. After that, the flame and the flow field interact with each other turning to the turbulent flow and distorted flame front. (3) The growing process of the overpressure can be divided into four stages, which are influenced by the flame front area and the branch pipe pressure unload, indicating that the explosion flow field, flame behavior and dynamic overpressure have significant coupling effects.
  • loading
  • [1]
    SUN S C, LIU G, LIU J X, et al. Effect of porosity and element thickness on flame quenching for in-line crimped-ribbon flame arresters [J]. Journal of Loss Prevention in the Process Industries, 2017, 50: 221–228. DOI: 10.1016/j.jlp.2017.09.017.
    [2]
    王波, 杜扬, 齐圣, 等. 油气爆炸在细长密闭管道内的振荡传播特性 [J]. 振动与冲击, 2017, 36(17): 97–103, 126. DOI: 10.13465/j.cnki.jvs.2017.17.016.

    WANG B, DU Y, QI S, et al. Oscillation propagation characteristics of gasoline-air mixture explosion in elongated closed tubes [J]. Journal of Vibration and Shock, 2017, 36(17): 97–103, 126. DOI: 10.13465/j.cnki.jvs.2017.17.016.
    [3]
    杜扬, 王世茂, 齐圣, 等. 油气在顶部含弱约束结构受限空间内的爆炸特性 [J]. 爆炸与冲击, 2017, 37(1): 53–60. DOI: 10.11883/1001-1455(2017)01-0053-08.

    DU Y, WANG S M, QI S, et al. Explosion of gasoline/air mixture in confined space with weakly constrained structure at the top [J]. Explosion and Shock Waves, 2017, 37(1): 53–60. DOI: 10.11883/1001-1455(2017)01-0053-08.
    [4]
    QI S, DU Y, WANG S M, et al. The effect of vent size and concentration in vented gasoline-air explosions [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 88–94. DOI: 10.1016/j.jlp.2016.08.005.
    [5]
    YU M G, WAN S J, ZHENG K, et al. Influence on the methane/air explosion characteristics of the side venting position in a pipeline [J]. Process Safety and Environmental Protection, 2017, 111: 292–299. DOI: 10.1016/j.psep.2017.07.017.
    [6]
    李国庆, 杜扬, 齐圣, 等. 连续圆孔障碍物对油气泄压爆炸火焰特性影响大涡模拟 [J]. 爆炸与冲击, 2018, 38(6): 1286–1394. DOI: 10.11883/bzycj-2017-0215.

    LI G Q, DU Y, QI S, et al. Large eddy simulation on the vented gasoline-air mixture explosions in a semi-confined pipe with continuous circular hollow obstacles [J]. Explosion and Shock Waves, 2018, 38(6): 1286–1394. DOI: 10.11883/bzycj-2017-0215.
    [7]
    LI G Q, DU Y, WANG S M, et al. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe [J]. Journal of Hazardous Materials, 2017, 339: 131–142. DOI: 10.1016/j.jhazmat.2017.06.018.
    [8]
    WEN X P, YU M G, JI W T, et al. Methane-air explosion characteristics with different obstacle configurations [J]. International Journal of Mining Science and Technology, 2015, 25(2): 213–218. DOI: 10.1016/j.ijmst.2015.02.008.
    [9]
    BLANCHARD R, ARNDT D, GRÄTZ R, et al. Explosions in closed pipes containing baffles and 90 degree bends [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(2): 253–259. DOI: 10.1016/j.jlp.2009.09.004.
    [10]
    ZHU C J, LIN B Q, JIANG B Y. Flame acceleration of premixed methane/air explosion in parallel pipes [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(2): 383–390. DOI: 10.1016/j.jlp.2011.10.004.
    [11]
    XIAO H H, HE X C, WANG Q S, et al. Experimental and numerical study of premixed flame propagation in a closed duct with a 90° curved section [J]. International Journal of Heat and Mass Transfer, 2013, 66: 818–822. DOI: 10.1016/j.ijheatmasstransfer.2013.07.091.
    [12]
    ZHU C J, LIN B Q, YE Q, et al. Effect of roadway turnings on gas explosion propagation characteristics in coal mines [J]. Mining Science and Technology (China), 2011, 21(3): 365–369. DOI: 10.1016/j.mstc.2011.05.006.
    [13]
    NIU Y H, SHI B M, JIANG B Y. Experimental study of overpressure evolution laws and flame propagation characteristics after methane explosion in transversal pipe networks [J]. Applied Thermal Engineering, 2019, 154: 18–23. DOI: 10.1016/j.applthermaleng.2019.03.059.
    [14]
    ZHANG P L, DU Y, ZHOU Y, et al. Explosions of gasoline-air mixture in the tunnels containing branch configuration [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1279–1284. DOI: 10.1016/j.jlp.2013.07.003.
    [15]
    LI G Q, DU Y, QI S, et al. Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 529–536. DOI: 10.1016/j.jlp.2016.07.022.
    [16]
    杜扬, 李国庆, 吴松林, 等. T型分支管道对油气爆炸强度的影响 [J]. 爆炸与冲击, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.

    DU Y, LI G Q, WU S L, et al. Explosion intensity of gasoline-air mixture in the pipeline containing a T-shaped branch pipe [J]. Explosion and Shock Waves, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.
    [17]
    杜扬, 李蒙, 李国庆, 等. 含双侧分支结构受限空间油气泄压爆炸超压特性与火焰行为 [J]. 化工进展, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.

    DU Y, LI M, LI G Q, et al. Effects of bilateral branches structure on characteristics of gasoline-air mixtures explosion overpressure and flame behavior in a semi-confined space [J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.
    [18]
    刘冲, 杜扬, 李国庆, 等. 狭长密闭空间内油气爆炸火焰特性大涡模拟 [J]. 化工学报, 2018, 69(12): 5348–5358. DOI: 10.11949/j.issn.0438-1157.20180614.

    LIU C, DU Y, LI G Q, et al. Large eddy simulation of gasoline-air mixture explosion in closed narrow-long space [J]. CIESC Journal, 2018, 69(12): 5348–5358. DOI: 10.11949/j.issn.0438-1157.20180614.
    [19]
    NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor [J]. Flow, Turbulence and Combustion, 1999, 62(3): 183–200. DOI: 10.1023/A:1009995426001.
    [20]
    ZIMONT V L, BATTAGLIA V. Joint RANS/LES approach to premixed flamemodelling in the context of the TFC combustion model [J]. Flow, Turbulence and Combustion, 2006, 77(1−4): 305–331. DOI: 10.1007/s10494-006-9048-0.
    [21]
    温小萍. 瓦斯湍流爆燃火焰特性与多孔介质淬熄抑爆机理研究[D]. 大连: 大连理工大学, 2014: 63−65.
    [22]
    ZHENG K, YU M G, LIANG Y P, et al. Large eddy simulation of premixed hydrogen/methane/air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2018, 43(7): 3871–3884. DOI: 10.1016/j.ijhydene.2018.01.045.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (4480) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return