Citation: | JIANG Zhaoxiu, GAO Guangfa, WANG Yonggang. Discrete element simulation on dynamic response and damage evolution in porous ferroelectric ceramics under shock compression[J]. Explosion And Shock Waves, 2020, 40(5): 053103. doi: 10.11883/bzycj-2019-0410 |
[1] |
TUTTLE B A, YANG P, GIESKE J H. Pressure-induced phase transformation of controlled-porosity Pb(Zr0.95Ti0.05)O3 ceramics [J]. Journal of the American Ceramic Society, 2001, 84(6): 1260–1264. DOI: 10.1111/j.1151-2916.2001.tb00826.x.
|
[2] |
FENG N, NIE H, CHEN X, et al. Depoling of porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics under shock wave load [J]. Current Applied Physics, 2010, 10(6): 1387–1390. DOI: 10.1016/j.cap.2010.04.012.
|
[3] |
李成华, 蒋招绣, 王永刚, 等. 高应变率下多孔未极化PZT95/5铁电陶瓷的非线性力学为 [J]. 爆炸与冲击, 2018, 38(4): 707–715. DOI: 10.11883/bzycj-2016-0329.
LI C H, JIANG Z X, WANG Y G, et al. Nonlinear mechanical response of PZT95/5 ferroelectric ceramics under high strain rate loading [J]. Explosion and Shock Waves, 2018, 38(4): 707–715. DOI: 10.11883/bzycj-2016-0329.
|
[4] |
刘高旻, 刘雨生, 张毅, 等. PZT铁电陶瓷及其在脉冲能源中的应用 [J]. 材料导报, 2006, 20(6): 74–77. DOI: 10.3321/j.issn:1005-023X.2006.06.020.
LIU G M, LIU Y S, ZHANG Y, et al. PZT ferroelectric ceramic for shock driver pulsed supply [J]. Materials Reports, 2006, 20(6): 74–77. DOI: 10.3321/j.issn:1005-023X.2006.06.020.
|
[5] |
SHKURATOV S I, BAIRD J, ANTIPOV V G, et al. Depolarization mechanisms of PbZr0.52Ti0.48O3 and PbZr0.95Ti0.05O3 poled ferroelectrics under high strain rate loading [J]. Applied Physics Letters, 2014, 104(21): 212901. DOI: 10.1063/1.4879545.
|
[6] |
DUNGAN R H, STORZ L J. Relation between chemical, mechanical, and electrical properties of Nb2O5-Modified-95Mol% PbZrO3-5Mol% PbTiO3 [J]. Journal of the American Ceramic Society, 1985, 68(10): 530–533. DOI: 10.1111/j.1151-2916.1985.tb11518.x.
|
[7] |
喻寅, 王文强, 杨佳, 等. 多孔脆性介质冲击波压缩破坏的细观机理和图像 [J]. 物理学报, 2012, 61(4): 48103. DOI: 10.7498/aps.61.048103.
YU Y, WANG W Q, YANG J, et al. Mesoscopic picture of fracture in porous brittle material under shock wave compression [J]. Acta Physica Sinica, 2012, 61(4): 48103. DOI: 10.7498/aps.61.048103.
|
[8] |
SETCHELL R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.9-Nb0.02O3: microstructural effects [J]. Journal of Applied Physics, 2007, 101: 053525. DOI: 10.1063/1.2697428.
|
[9] |
RASORENOV S V, KANEL G I. The fracture of glass under high-pressure impulsive loading [J]. High Pressure Research, 1991(6): 225–232. DOI: 10.1080/08957959108202508.
|
[10] |
GRADY D E. Dynamic failure in brittle solids [R]. Nasa Sti/recon Technical Report N, 1994: 95.
|
[11] |
SETCHELL R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.9-Nb0.02O3: Hugoniot states and constitutive mechanical properties [J]. Journal of Applied Physics, 2003, 94(1): 1519–1525. DOI: 10.1063/1.1578526.
|
[12] |
赵铮, 李晓杰, 陶钢. 冲击载荷下孔隙塌缩过程的数值模拟 [J]. 爆炸与冲击, 2009, 29(3): 289–294. DOI: 10.3321/j.issn:1001-1455.2009.03.011.
ZHAO Z, LI X J, TAO G, et al. Numerical simulation of the process of pore collapse under shock load [J]. Explosion and Shock Waves, 2009, 29(3): 289–294. DOI: 10.3321/j.issn:1001-1455.2009.03.011.
|
[13] |
ESPINOSA H D, ZSVATTIERI P D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials: part II: numerical examples [J]. Mechanics of Materials, 2003, 35(3-6): 365–394. DOI: 10.1016/S0167-6636(02)00287-9.
|
[14] |
BRANICIO P S, KALIA R K, NAKANO A, et al. Atomistic damage mechanisms during hypervelocity projectile impact on AIN: a large-scale parallel molecular dynamics simulation study [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1955–1988. DOI: 10.1016/j.jmps.2007.11.004.
|
[15] |
YU Y, WANG W Q, HE H L, et al. Modeling multiscale evolution of numerous voids in shocked brittle material [J]. Physical Review E, 2014, 89(4): 043309. DOI: 10.1103/PhysRevE.89.043309.
|
[16] |
YU Y, WANG W Q, HE H L, et al. Mesoscopic deformation features of shocked porous ceramic: polycrystalline modeling and experimental observations [J]. Journal of Applied Physics, 2015, 117: 125901. DOI: 10.1063/1.4916244.
|
[17] |
POTYONDY D O. A flat-jointed bonded-particle material for hard rock [C]//The 46th U.S. Rock Mechanics/Geomechanics Symposium. Chicago, USA: ARMA, 2012. https://www.onepetro.org/conference-paper/ARMA-2012-501.
|
[18] |
JIANG Z X, WANG Y G, NIE H C, et al. Influence of porosity on nonlinear mechanical properties of unpoled porous Pb(Zr0.95Ti0.05)O3 ceramics under uniaxial compression [J]. Mechanics of Materials, 2016, 104: 139–144. DOI: 10.1016/j.mechmat.2016.11.001.
|
[19] |
WENG J D, WANG X, MA Y, et al. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser [J]. Review of Scientific Instruments, 2008, 79(11): 111101. DOI: 10.1063/1.3020700.
|
[20] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assembles [J]. Geotechnique, 1979, 29(1): 47–65. DOI: 10.1680/geot.1979.29.1.47.
|
[21] |
POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 1329–1364. DOI: 10.1016/j.ijrmms.2004.09.011.
|
[22] |
CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 1329–1364. DOI: 10.1016/j.ijrmms.2007.02.002.
|
[23] |
CHEN M W, MCCAULEY J W, DANDEKAR D P, et al. Dynamic plasticity and failure of high-purity alumina under shock loading [J]. Nature Materials, 2006, 5(8): 614–618. DOI: 10.1038/nmat1689.
|
[24] |
熊迅, 李天密, 周风华, 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟 [J]. 力学学报, 2018, 50(3): 622–632. DOI: 10.6052/0459-1879-17-410.
XIONG X, LI T M, ZHOU F H, et al. Discrete element simulations of the high velocity expansion and fragmentation of quartz glass rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622–632. DOI: 10.6052/0459-1879-17-410.
|