Volume 40 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
LI Pu, YUE Jingxia, LI Xiaobin, PENG Shuai. Impact resistance of thickness-graded arrow-shaped honeycomb pedestals with negative Poisson’s ratio[J]. Explosion And Shock Waves, 2020, 40(7): 071403. doi: 10.11883/bzycj-2019-0414
Citation: LI Pu, YUE Jingxia, LI Xiaobin, PENG Shuai. Impact resistance of thickness-graded arrow-shaped honeycomb pedestals with negative Poisson’s ratio[J]. Explosion And Shock Waves, 2020, 40(7): 071403. doi: 10.11883/bzycj-2019-0414

Impact resistance of thickness-graded arrow-shaped honeycomb pedestals with negative Poisson’s ratio

doi: 10.11883/bzycj-2019-0414
  • Received Date: 2019-10-28
  • Rev Recd Date: 2020-05-25
  • Available Online: 2020-06-25
  • Publish Date: 2020-07-01
  • An arrow-shaped honeycomb pedestal with negative Poisson’s ratio was designed. An analytical formula was derived for the mechanical properties of the cell structures, and the impact resistance of the thickness-graded arrow-shaped honeycomb materials with negative Poisson's ratio was numerically studied by the explicit dynamic finite element method. Based on the concept of functionally-graded materials, honeycomb layers with pathwise thickness gradient, inverse thickness gradient and uniform thickness were designed, by taking the thickness of the cell wall as the independent variable, the relevant model was established. The influence of thickness gradients on the impact resistance of the pedestal was discussed concretely under the premise of constant pedestal mass. The results show that, under the same gradient setting, the change of cell angle will cause the change of equivalent elastic modulus of the honeycomb structure, thus changing the impact resistance of the pedestal. When the honeycomb layer with a thinner cell wall is placed at the impact end, the stress level of the pedestal is significantly reduced. By placing a honeycomb layer with a thicker cell wall on the impact end, the output impact environment of the pedestal panel can be effectively controlled.
  • loading
  • [1]
    王军, 卢立新. 蜂窝纸板面内平台应力表征 [J]. 工程力学, 2012, 29(8): 354–359. DOI: 10.6052/j.issn.1000-4750.2010.11.0816.

    WANG J, LU L X. Characterization of in-plane platean stress for honeycomb paperboard [J]. Engineering Mechanics, 2012, 29(8): 354–359. DOI: 10.6052/j.issn.1000-4750.2010.11.0816.
    [2]
    张伟. 三维负泊松比多胞结构的轴向压缩性能研究[D]. 大连: 大连理工大学, 2015.
    [3]
    CHOI J B, LAKES R S. Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio [J]. International Journal of Mechanical Sciences, 1995, 37(1): 51–59. DOI: 10.1016/0020-7403(94)00047-n.
    [4]
    LI Y, CORMIER D, WEST H, et al. Non-stochastic Ti-6Al-4V foam structures with negative Poisson’s ratio [J]. Materials Science and Engineering: A, 2012, 558: 579–585. DOI: 10.1016/j.msea.2012.08.053.
    [5]
    SCHULTZ J, GRIESE D, SHANKAR P, et al. Optimization of honeycomb cellular meso-structures for high speed impact energy absorption [C] // Proceedings of ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Washington: American Society of Mechanical Engineers, 2014: 955-965. DOI: 10.1115/DETC2011-48000.
    [6]
    杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构 [J]. 爆炸与冲击, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.

    YANG D Q, MA T, ZHANG G L. A novel auxetic broadside defensive structure for naval ships [J]. Explosion and Shock Waves, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.
    [7]
    ZHANG X C, AN L Q, DING H M, et al. Influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson’s ratio [J]. Journal of Sandwich Structures and Materials, 2015, 17(1): 26–55. DOI: 10.1177/1099636214554180.
    [8]
    KOIZUMI M. FGM activities in Japan [J]. Composites Part B: Engineering, 1997, 28(1−2): 1–4.
    [9]
    何强, 马大为, 张震东, 等. 功能梯度蜂窝材料的面内冲击性能研究 [J]. 工程力学, 2016, 33(2): 172–178. DOI: 10.6052/j.issn.1000-4750.2014.05.0392.

    HE Q, MA D W, ZHANG Z D, et al. Research on the in-plane dynamic crushing of functionally graded honeycombs [J]. Engineering Mechanics, 2016, 33(2): 172–178. DOI: 10.6052/j.issn.1000-4750.2014.05.0392.
    [10]
    吴鹤翔, 刘颖. 梯度分布对密度梯度金属空心球阵列动力学性能的影响 [J]. 工程力学, 2013, 30(1): 425–431. DOI: 10.6052/j.issn.1000-4750.2011.06.0335.

    WU H X, LIU Y. The influence of gradient profile on the dynamic properties of density graded metal hollow sphere arrays [J]. Engineering Mechanics, 2013, 30(1): 425–431. DOI: 10.6052/j.issn.1000-4750.2011.06.0335.
    [11]
    AJDARI A, CANAVAN P, NAYEB-HASHEMI H, et al. Mechanical properties of functionally graded 2-D cellular structures: a finite element simulation [J]. Materials Science and Engineering: A, 2009, 499(1−2): 434–439. DOI: 10.1016/j.msea.2008.08.040.
    [12]
    GUPTA N. A functionally graded syntactic foam material for high energy absorption under compression [J]. Materials Letters, 2007, 61(4−5): 979–982. DOI: 10.1016/j.matlet.2006.06.033.
    [13]
    LIANG C, KIERNAN S, GILCHRIST M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering: A, 2009, 507(1−2): 215–225. DOI: 10.1016/j.msea.2008.12.011.
    [14]
    李营, 汪玉, 吴卫国, 等. 船用907A钢的动态力学性能和本构关系 [J]. 哈尔滨工程大学学报, 2015, 36(1): 127–129. DOI: 10.3969/j.issn.1006-7043.201311093.

    LI Y, WANG Y, WU W G, et al. Dynamic mechanical properties and constitutive relations of marine 907A steel [J]. Journal of Harbin Engineering University, 2015, 36(1): 127–129. DOI: 10.3969/j.issn.1006-7043.201311093.
    [15]
    王军. 浮动冲击平台冲击动力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
    [16]
    German Federal Office for Military Technology and Procurement. Shock resistance specification for bundeswehr ships: BV043[S]. 1985.
    [17]
    卢子兴, 李康. 四边手性蜂窝动态压溃行为的数值模拟 [J]. 爆炸与冲击, 2014, 34(2): 181–187. DOI: 10.11883/1001-1455(2014)02-0181-07.

    LU Z X, LI K. Numerical simulation on dynamic crushing behaviors of tetrachiral honeycombs [J]. Explosion and Shock Waves, 2014, 34(2): 181–187. DOI: 10.11883/1001-1455(2014)02-0181-07.
    [18]
    王军, 姚熊亮, 杨棣. 浮动冲击平台冲击环境对设备响应的影响 [J]. 爆炸与冲击, 2015, 35(2): 236–242. DOI: 10.11883/1001-1455(2015)02-0236-07.

    WANG J, YAO X L, YANG D. Impact analysis of shock environment from floating shock platform on equipment response [J]. Explosion and Shock Waves, 2015, 35(2): 236–242. DOI: 10.11883/1001-1455(2015)02-0236-07.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (4962) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return