Volume 40 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
ZHANG Pengfei, LIU Zhifang, LI Shiqiang. Dynamic response of sandwich tubes with graded foam aluminum cores under internal blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 071402. doi: 10.11883/bzycj-2019-0418
Citation: ZHANG Pengfei, LIU Zhifang, LI Shiqiang. Dynamic response of sandwich tubes with graded foam aluminum cores under internal blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 071402. doi: 10.11883/bzycj-2019-0418

Dynamic response of sandwich tubes with graded foam aluminum cores under internal blast loading

doi: 10.11883/bzycj-2019-0418
  • Received Date: 2019-10-29
  • Rev Recd Date: 2020-02-12
  • Available Online: 2020-05-25
  • Publish Date: 2020-07-01
  • Dynamic response of sandwich tubes subjected to blast loading is investigated numerically. The 3D-Voronoi technology is introduced to establish three-dimensional mesoscopic finite element model of aluminum foam. The influences of the thickness of inner and outer tubes, the relative density of foam core and the core gradient on the blast resistance and energy absorption of the sandwich tubes are analyzed and compared with the double circular tubes with air core. The results show that the relative density of foam materials can be controlled by changing the size and wall thickness of cell, and the calculation results of the sandwich tube constructed by two methods are consistent. The increase of the inner tube thickness can effectively reduce the plastic deformation of outer tube and weaken the energy absorption of foam core. Foam filling is of benefit to reduce the plastic deformation of inner tube and the blast resistance of positive gradient is better than that of negative gradient and uniform core.
  • loading
  • [1]
    刘志芳, 王军, 秦庆华. 横向冲击载荷下泡沫铝夹芯双圆管的吸能研究 [J]. 兵工学报, 2017, 38(11): 2259–2267. DOI: 10.3969/j.issn.1000-1093.2017.11.024.

    LIU Z F, WANG J, QIN Q H. Research on energy absorption of aluminum foam-filled double circular tubes under lateral impact loadings [J]. Acta Armamentarii, 2017, 38(11): 2259–2267. DOI: 10.3969/j.issn.1000-1093.2017.11.024.
    [2]
    LI S Q, WANG Z H, WU G Y, et a1. Dynamic response of sandwich spherical shell with graded metallic foam cores subjected to blast loading [J]. Composites Part A: Applied Science And Manufacturing, 2014, 56: 262–271. DOI: 10.1016/j.compositesa.2013.10.019.
    [3]
    SHEN J H, LU G X, ZHAO L M, et al. Short sandwich tubes subjected to internal explosive loading [J]. Engineering Structures, 2013, 55: 56–65. DOI: 10.1016/j.engstruct.2011.12.005.
    [4]
    CHENG Y S, LIU M X, ZHANG P, et al. The effects of foam filling on the dynamic response of metallic corrugated core sandwich panel under air blast loading—Experimental investigations [J]. International Journal of Mechanical Sciences, 2018, 145: 378–388. DOI: 10.1016/j.ijmecsci.2018.07.030.
    [5]
    LIU X R, TIAN X G, LU T J, et al. Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores [J]. Composite Structures, 2012, 94(8): 2485–2493. DOI: 10.1016/j.compstruct.2012.02.029.
    [6]
    NURICK G N, LANGDON G S, CHI Y, et al. Behaviour of sandwich panels subjected to intense air blast—Part 1: experiments [J]. Composite Structures, 2009, 91(4): 433–441. DOI: 10.1016/j.compstruct.2009.04.009.
    [7]
    KARAGIOZOVA D, NURICK G N, LANGDON G S. Behaviour of sandwich panels subject to intense air blasts—Part 2: Numerical simulation [J]. Compos Structures, 2009, 91(4): 442–450. DOI: 10.1016/j.compstruct.2009.04.010.
    [8]
    KARAGIOZOVA D, LANGDON G S, NURICK G N, et al. The influence of a low density foam sandwich core on the response of a partially confined steel cylinder to internal air-blast [J]. International Journal of Impact Engineering, 2016, 92: 32–49. DOI: 10.1016/j.ijimpeng.2015.09.010.
    [9]
    SHEN C J, LU G, YU T X. Investigation into the behavior of a graded cellular rod under impact [J]. International Journal of Impact Engineering, 2014, 74: 92–106. DOI: 10.1016/j.ijimpeng.2014.02.015.
    [10]
    GARDNER N, WANG E, SHUKLA A. Performance of functionally graded sandwich composite beams under shock wave loading [J]. Composite Structures, 2012, 94(5): 1755–1770. DOI: 10.1016/j.compstruct.2011.12.006.
    [11]
    LIANG M Z, LI X R, LIN Y L, et al. Dynamic compressive behaviors of two-layer graded aluminum foams under blast loading [J]. Materials, 2019, 12(9): 1445. DOI: 10.3390/ma12091445.
    [12]
    范志庚, 陈常青, 胡文军, 等. 泡孔微结构对弹性泡沫材料宏观压缩力学性能的影响分析 [J]. 机械强度, 2015, 37(5): 892–897. DOI: 10.16579/j.issn.1001.9669.2015.05.005.

    FAN Z G, CHEN C Q, HU W J, et al. Effects of microstructure on the large compression behavior of rubber foams [J]. Journal of Mechanical Strength, 2015, 37(5): 892–897. DOI: 10.16579/j.issn.1001.9669.2015.05.005.
    [13]
    ZHANG J J, WANG Z H, ZHAO L M. Dynamic response of functionally graded cellular materials based on the Voronoi model [J]. Composites Part B: Engineering, 2016, 85: 176–187. DOI: 10.1016/j.compositesb.2015.09.045.
    [14]
    LIANG M Z, LU F Y, ZHANG G D, et al. Experimental and numerical study of aluminum foam-cored sandwich tubes subjected to internal air blast [J]. Composites Part B: Engineering, 2017, 125: 134–143. DOI: 10.1016/j.compositesb.2017.05.073.
    [15]
    LIANG M Z, ZHANG G D, LU F Y, et al. Blast resistance and design of sandwich cylinder with graded foam cores based on the Voronoi algorithm [J]. Thin-Walled Structures, 2017, 112: 98–106. DOI: 10.1016/j.tws.2016.12.016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views (4887) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return