Citation: | ZHOU Jie, ZHI Xiaoqi, WANG Shuai, FAN Xinghua. Influences of the heating rate and rheological properties on slow cook-off response of composition B[J]. Explosion And Shock Waves, 2020, 40(12): 122302. doi: 10.11883/bzycj-2019-0431 |
[1] |
CUDZIłO S, TRZCIńSKI W A. Melt cast high explosives [J]. Bulletin of the Military University of Technology, 2014, 63(4): 43–55. DOI: 10.5604/12345865.1131330.
|
[2] |
KRAWIETZ T R, McKENNEY R L, ORTIZ R J. Characterization of the unconfined slow cook-off response of nitramines and nitraminecomposites with TNT [C] // 12th International Detonation Symposium. San Diego, 2002: 79−86.
|
[3] |
周捷, 智小琦, 王帅, 等. B炸药慢速烤燃过程的流变特性 [J]. 爆炸与冲击, 2020, 40(5): 052301. DOI: 10.11883/bzycj-2019-0321.
ZHOU J, ZHI X Q, WANG S, et al. Rheological properties of Composition B in slow cook-off process [J]. Explosion and Shock Wave, 2020, 40(5): 052301. DOI: 10.11883/bzycj-2019-0321.
|
[4] |
ZERKLE D K, NUNEZ M P, ZUCKER J M. Molten composition B viscosity at elevated temperature [J]. Journal of Energetic Materials, 2016, 34(4): 368–383. DOI: 10.1080/07370652.2015.1102179.
|
[5] |
DAVIS S M, ZERKLE D K. Short communication: estimation of yield stress/viscosity of molten octol [J]. AIP Advances, 2018, 8(5): 055202. DOI: 10.1063/1.5027397.
|
[6] |
DAVIS S M, ZERKLE D K, SMILOWITZ L B, et al. Molten composition B-3 yield stress model [J]. AIP Conference Proceedings, 2018, 1979(1): 150011. DOI: 10.1063/1.5044967.
|
[7] |
DAVIS S M, ZERKLE D K, SMILOWITZ L B, et al. Integratedrheology model: explosive composition B-3 [J]. Journal of Energetic Materials, 2018, 36(4): 398–411. DOI: 10.1080/07370652.2018.1451573.
|
[8] |
JAN H E. Slow heating, munitions test procedures: STANAG 4382 [S]. Brussels: NATO Standerdization Agency, 2003.
|
[9] |
MCCALLEN R, DUNN T, NICHOLS A, et al, Modeling of thermal convection of liquid TNT for cook-off [C] // Nuclear Explosives Code Development Conference, Monterey, 2003.
|
[10] |
PARRY M A, BILLON H H. A note on the coefficient of viscosity of pure molten 2, 4, 6-trinitrotoluene (TNT) [J]. Rheologica Acta, 1988, 27(6): 661–663. DOI: 10.1007/BF01337463.
|
[11] |
PARRY M A, BILLON H H. Flow behavior of molten 2, 4, 6-trinitrotoluene (TNT) between concentric cylinders [J]. Rheologica Acta, 1990, 29(5): 462–468. DOI: 10.1007/BF01376797.
|
[12] |
NICHOLS A L. Improved cook-off modeling of multi-component cast explosives [J]. AIP Conference Proceedings, 2018: 150029. DOI: 10.1063/1.5044985.
|
[13] |
GUILLEMIN J P, BRUNET L, BONNEFOY O, et al. A flow time model for melt-cast insensitive explosive process [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(3): 261–266. DOI: 10.1002/prep.200700028.
|
[14] |
ZHU D L, ZHOU L, ZHANG X R. Rheological behavior of DNAN/HMX melt-cast explosives [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(12): 1583–8. DOI: 10.1002/prep.201900117.
|
[15] |
PAPANASTASIOU T C. Flows of materials with yield [J]. Journal of Rheology, 1987, 31(5): 385–404. DOI: 10.1122/1.549926.
|
[16] |
HOBBS M L, KANESHIGE M J, TODD S N, et al. RDX solubility in TNT at high temperatures [J]. Journal of Thermal Analysis and Calorimetry, 2019, 142(2): 861–869. DOI: 10.1007/s10973-019-08924-z.
|
[17] |
HOBBS M L, KANESHIGE M J, ANDERSON M U. Cook-off of a melt-castableexplosive (Comp-B) [C] // Proceedings of the 27th Propulsion Systems Hazards Joint Subcommittee Meeting. Monterrey: SNL-NM, 2012.
|
[18] |
SANHYE W, DUBOIS C, LAROCHE I, et al. Numerical modeling of the cooling cycle and associated thermal stresses in a melt explosive charge [J]. AIChE Journal, 2016, 62(10): 3797–3811. DOI: 10.1002/aic.15288.
|
[19] |
McCLELLAND M A, GLASCOE E A, NICHOLS A L, et al, ALE3D simulation of incompressible flow, heat transfer, and chemical decomposition of Comp B in slow cookoff experiments [C] // 15th International Detonation Symposium. 2014: 1196−1206.
|
[1] | WANG Wu, YANG Jun, WANG Anbao, LI Shengjie. Resistance equation of projectile penetrating into reinforced concrete shield[J]. Explosion And Shock Waves, 2025, 45(3): 033301. doi: 10.11883/bzycj-2024-0217 |
[2] | CHENG Yuehua, WU Hao, CEN Guohua, ZHANG Yu. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads[J]. Explosion And Shock Waves, 2025, 45(1): 013301. doi: 10.11883/bzycj-2024-0061 |
[3] | QIAN Bingwen, ZHOU Gang, LI Mingrui, YIN Lixin, GAO Pengfei, CHEN Chunlin, MA Kun. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities[J]. Explosion And Shock Waves, 2024, 44(10): 103301. doi: 10.11883/bzycj-2022-0309 |
[4] | FENG XiaoWei, LI Juncheng, LU Yonggang, WANG Shouqian, LU Zhengcao, LIU Chuang, FU Dan. Characteristics of high-mass tungsten alloy kinetic projectile penetrating ultra-high strength steel targets at high velocity[J]. Explosion And Shock Waves, 2023, 43(9): 091410. doi: 10.11883/bzycj-2023-0016 |
[5] | HE Liling, GUO Hu, CHEN Xiaowei, YAN Yixia, LI Jicheng, CHEN Gang. Influence of structural deformation on the deflection of penetrator into concrete target with deep penetration[J]. Explosion And Shock Waves, 2023, 43(9): 091404. doi: 10.11883/bzycj-2023-0068 |
[6] | WANG Kehui, ZHOU Gang, LI Ming, ZOU Huihui, WU Haijun, GENG Baogang, DUAN Jian, DAI Xianghui, SHEN Zikai, LI Pengjie, GU Renhong. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target[J]. Explosion And Shock Waves, 2021, 41(11): 113302. doi: 10.11883/bzycj-2020-0463 |
[7] | LIU Junwei, ZHANG Xianfeng, LIU Chuang, CHEN Haihua, WANG Jipeng, XIONG Wei. Study on mass erosion model of projectile penetrating concrete at high speed considering variation of friction coefficient[J]. Explosion And Shock Waves, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250 |
[8] | OUYANG Hao, CHEN Xiaowei. Analysis of mass abrasion of high-speed penetrator influenced by aggregate in concrete target[J]. Explosion And Shock Waves, 2019, 39(7): 073102. doi: 10.11883/bzycj-2018-0068 |
[9] | SONG Chunming, LI Gan, WANG Mingyang, QIU Yanyu, CHENG Yihao. Theoretical analysis of projectiles penetrating into rock targets at different velocities[J]. Explosion And Shock Waves, 2018, 38(2): 250-257. doi: 10.11883/bzycj-2017-0198 |
[10] | Chen Changhai, Hou Hailiang, Zhang Yuanhao, Dai Wenxi, Zhu Xi, Fang Zhiwei. Residual characteristics of moderately thick water-backed steel plates penetrated by high-velocity fragments[J]. Explosion And Shock Waves, 2017, 37(6): 959-965. doi: 10.11883/1001-1455(2017)06-0959-07 |
[11] | Wang Qifan, Shi Shaoqing, Wang Zheng, Sun Jianhu, Chu Zhaojun. Experimental study on penetration-resistance characteristics of honeycomb shelter[J]. Explosion And Shock Waves, 2016, 36(2): 253-258. doi: 10.11883/1001-1455(2016)02-0253-06 |
[12] | Song Meili, Li Wenbin, Wang Xiaoming, Feng Jun, Liu Zhilin. Experiments and dimensional analysis ofhigh-speed projectile penetration efficiency[J]. Explosion And Shock Waves, 2016, 36(6): 752-758. doi: 10.11883/1001-1455(2016)06-0752-07 |
[13] | Li Jie, Li Meng-shen, Li Hong, Shi Cun-cheng. Numerical modeling of projectile penetration into dry sand[J]. Explosion And Shock Waves, 2015, 35(5): 633-640. doi: 10.11883/1001-1455(2015)05-0633-08 |
[14] | Shen Chao, Pi Ai-guo, Liu Liu, Liu Jian-cheng, Huang Feng-lei. Discarding the sabot of a high-velocity projectile by a laminated wood target[J]. Explosion And Shock Waves, 2015, 35(5): 711-716. doi: 10.11883/1001-1455(2015)05-0711-06 |
[15] | Guo Lei, He Yong, Zhang Nian-song, Pang Chun-xu, Zheng Hao. On the mass loss of a projectile based on the Archard theory[J]. Explosion And Shock Waves, 2014, 34(5): 622-629. doi: 10.11883/1001-1455(2014)05-0622-08 |
[16] | HeLi-ling, GaoJin-zhong, ChenXiao-wei, SunYuan-cheng, JiYong-qiang. Experimentalstudyonmeasurementtechnologyforprojectiledeceleration[J]. Explosion And Shock Waves, 2013, 33(6): 608-612. doi: 10.11883/1001-1455(2013)06-0608-05 |
[17] | HE Li-ling, CHEN Xiao-wei, FAN Ying. Metallographicobservationofreduced-scaleadvancedEPW afterhigh-speedpenetration[J]. Explosion And Shock Waves, 2012, 32(5): 515-522. doi: 10.11883/1001-1455(2012)05-0515-08 |
[18] | WANG Yi-nan, HUANG Feng-lei, DUAN Zhuo-ping. Bendingofprojectilewithsmallangleofattack duringhigh-speedpenetrationofconcretetargets[J]. Explosion And Shock Waves, 2010, 30(6): 598-606. doi: 10.11883/1001-1455(2010)06-0598-09 |
[19] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[20] | LIANG Bin, CHEN Xiao-wei, JI Yong-qiang, HUANG Han-jun, GAO Hai-ying, . Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon[J]. Explosion And Shock Waves, 2008, 28(1): 1-9. doi: 10.11883/1001-1455(2008)01-0001-09 |
1. | 陈青华,陶彦光,梁振刚,杨佳岐. 双舱室模型内爆炸临舱压力载荷特性分析. 舰船科学技术. 2024(11): 75-79 . ![]() | |
2. | 李营,杜志鹏,陈赶超,王诗平,侯海量,李晓彬,张攀,张伦平,孔祥韶,李海涛,郭君,姚术健,王志凯,殷彩玉. 舰艇爆炸毁伤与防护若干关键问题研究进展. 中国舰船研究. 2024(03): 3-60 . ![]() | |
3. | 胡俊华,董奇,胡八一,任逸飞,黄广炎. 抗爆容器的内部爆炸效应和动态力学行为研究进展. 含能材料. 2024(09): 986-1008 . ![]() | |
4. | 王昭,吴祖堂,杨军,李焰,刘文祥. 新型薄膜式压力传感器的参数设计. 爆炸与冲击. 2023(07): 174-184 . ![]() | |
5. | 冯蕴雯,林心怡,薛小锋,杨祥,刘佳奇. 高可靠单向爆破的民机防爆结构设计. 航空学报. 2023(18): 191-205 . ![]() | |
6. | 刘文祥,张德志,程帅,马艳军. 爆炸容器研究进展. 现代应用物理. 2023(03): 61-69 . ![]() | |
7. | 刘欣,顾文彬,蔡星会,王涛,刘建青,王振雄,沈慧铭. 圆柱形爆炸容器的内壁爆炸载荷. 爆炸与冲击. 2022(02): 19-30 . ![]() | |
8. | 刘正,聂建新,徐星,朱英中,刘攀,郭学永,闫石,张韬. 密闭空间内六硝基六氮杂异伍兹烷基复合炸药能量释放特性. 兵工学报. 2022(03): 503-512 . ![]() | |
9. | 张鹏宙,董奇,杨沙. 爆炸载荷特征参数对无限长圆柱壳弹性动态响应的影响. 爆炸与冲击. 2021(06): 48-57 . ![]() | |
10. | 孙琦,董奇,杨沙,张刘成. 内爆炸准静态压力对球形容器弹塑性动态响应的影响. 含能材料. 2020(01): 25-31 . ![]() | |
11. | 张翔,崔春生,刘双峰,刘嘉颖,崔光强. 子弹在爆炸容器内的爆燃压力测试技术研究. 中国测试. 2020(01): 39-43 . ![]() | |
12. | 张龙,邹虹,张宝国,张继军,张东亮,孔德骞. 有限空间爆炸静态压力的温度补偿方法. 爆炸与冲击. 2020(03): 100-109 . ![]() | |
13. | 徐景林,顾文彬,刘建青,王振雄,陆鸣,徐博奥. 圆柱形爆炸容器内爆炸载荷的分布规律. 振动与冲击. 2020(18): 276-282 . ![]() | |
14. | 夏彬伟,高玉刚,刘承伟,欧昌楠,彭子烨,刘浪. 缝槽水压爆破破岩载荷实验研究. 工程科学学报. 2020(09): 1130-1138 . ![]() | |
15. | 张明明,张连生,王鑫. TNT内爆准静态压力实验和数值模拟研究. 兵器装备工程学报. 2019(05): 195-199 . ![]() | |
16. | 孙琦,董奇,杨沙,张刘成. 内爆炸准静态压力对球形容器弹性动态响应的影响. 含能材料. 2019(08): 698-707 . ![]() |