Citation: | YU Ming. An improved diffuse interface model for the numerical simulation of interaction between solid explosive detonation and inert media[J]. Explosion And Shock Waves, 2020, 40(10): 104202. doi: 10.11883/bzycj-2019-0435 |
[1] |
NEUMANN J V, RICHTMYER R D. A method for the numerical calculations of hydrodynamical shocks [J]. Journal of Applied Physics, 1950, 21: 232–238. DOI: 10.1063/1.1699639.
|
[2] |
WILKINS M L. Calculation of elastic-plastic flow, methods in computational physics: Vol.3 [M]. New York: Academic Press, 1964: 211−263.
|
[3] |
BENSON D J. Computational methods in Lagrangian and Eulerian hydrocodes [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2−3): 235–394. DOI: 10.1016/0045-7825(92)90042-I.
|
[4] |
BENSON D J. A multi-material Eulerian formulation for the efficient solution of impact and penetration problems [J]. Computational Mechanics, 1995, 15(6): 558–571. DOI: 10.1007/BF00350268.
|
[5] |
GLIMM J, ISAACSON E, MARCHESIN D, et al. Front tracking for hyperbolic systems [J]. Advances in Applied Mathematics, 1981, 2(1): 91–119. DOI: 10.1016/0196-8858(81)90040-3.
|
[6] |
TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow [J]. Journal of Computational Physics, 2001, 169: 708–759. DOI: 10.1006/jcph.2001.6726.
|
[7] |
HIRT C, NICHOLS B. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39: 201–225. DOI: 10.1016/0021-9991(81)90145-5.
|
[8] |
SAUREL R, ABGRALL R. A multiphase Godunov method for compressible multifluid and multiphase flows [J]. Journal of Computational Physics, 1999, 150: 425–467. DOI: 10.1006/jcph.1999.6187.
|
[9] |
OSHER S, SMEREKA P. A level set approach for computing solutions to incompressible two-phase flow [J]. Journal of Computational Physics, 1994, 114: 146–159. DOI: 10.1006/jcph.1994.1155.
|
[10] |
ASLAM T, BDZIL J, STEWART D. Level set method applied to modeling detonation shock dynamics [J]. Journal of Computational Physics, 1996, 126: 390–409. DOI: 10.1006/jcph.1996.0145.
|
[11] |
ANDERSON D M, MCFADDEN G B, WHEELER A A. Diffuse-interface methods in fluid mechanics [J]. Annual Review of Fluid Mechanics, 1998, 30: 139–165. DOI: 10.1146/annurev.fluid.30.1.139.
|
[12] |
YUE P, FENG J J, LIU C, et al. , A diffuse-interface method for simulating two-phase flows of complex fluids [J]. Journal of Fluid Mechanics, 2004, 515: 293–317. DOI: 10.1017/S0022112004000370.
|
[13] |
PETITPAS F, SAUREL R, FRANQUET E, et al. Modelling detonation waves in condensed energetic materials: multiphase CJ conditions and multidimensional computations [J]. Shock Wave, 2009, 19: 377–401. DOI: 10.1007/s00193-009-0217-7.
|
[14] |
FAVRIS N, GAVRILYUK S, RAUREL R. , Solid-fluid diffuse interface model in cases of extreme deformations [J]. Journal of Computational Physics, 2009, 228: 6037–6077. DOI: 10.1016/j.jcp.2009.05.015.
|
[15] |
SCHOCH S, NIKIFORAKIS N, LEE B, et al. Multi-phase simulation of ammonium nitrate emulsion detonation [J]. Combustion and Flame, 2013, 160: 1883–1899. DOI: 10.1016/j.combustflame.2013.03.033.
|
[16] |
NDANOU S, FAVTIE N, GAVRILYUK S. Multi-solid and multi-fluid diffuse interface model: applications to dynamics fracture and fragmentation [J]. Journal of Computational Physics, 2015, 295: 523–555. DOI: 10.1016/j.jcp.2015.04.024.
|
[17] |
SAUREL R, PANTANO C. Diffuse-interface capturing methods for compressible two-phase flows [J]. Annual Review of Fluid Mechanics, 2018, 50: 105–130. DOI: 10.1146/annurev-fluid-122316-050109.
|
[18] |
MICHAEL L, NIKIFORAKIS N. A hybrid formulation for the numerical simulation of condensed phase explosives [J]. Journal of Computational Physics, 2016, 316: 193–217. DOI: 10.1016/j.jcp.2016.04.017.
|
[19] |
TON V T. Improved shock-capturing methods for multicomponent and reactive flows [J]. Journal of Computational Physics, 1996, 128: 237–253. DOI: 10.1006/jcph.1996.0206.
|
[20] |
SHYUE K. An efficient shock-capturing algorithm for compressible multicomponent problems [J]. Journal of Computational Physics, 1998, 142(1): 208–242. DOI: 10.1006/jcph.1998.5930.
|
[21] |
BANKS J, SCHWENDEMAN D, KAPILA A. A high-resolution Godunov method for compressible multi-material flow on overlapping grids [J]. Journal of Computational Physics, 2007, 223(1): 262–297. DOI: 10.1016/j.jcp.2006.09.014.
|
[22] |
LEE B J, TORO E F, CASTRO C E, et al. Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state [J]. Journal of Computational Physics, 2013, 246: 165–183. DOI: 10.1016/j.jcp.2013.03.046.
|
[23] |
BAER M R, NUNZIATO J W. A two-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials [J]. International Journal of Multiphase Flow, 1986, 12: 861–889. DOI: 10.1016/0301-9322(86)90033-9.
|
[24] |
KAPILA A K, MENIKOFF R, BDZIL J B, et al. Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations [J]. Physics of Fluids, 2001, 13(10): 3002–3024. DOI: 10.1063/1.1398042.
|
[25] |
ALLAIRE G, CLERC S, KOKH S. A five-equation model for the simulation of interfaces between compressible fluids [J]. Journal of Computational Physics, 2002, 181: 577–616. DOI: 10.1006/jcph.2002.7143.
|
[26] |
MASSONI J, SAUREL R, NKONGA B. Some models and Eulerian methods for interfaces between compressible fluids with heat transfer [J]. International Journal of Heat and Mass Transfer, 2002, 45(6): 1287–1307. DOI: 10.1016/S0017-9310(01)00238-1.
|
[27] |
MURRONE A, GUILLARD H. A five equation reduced model for compressible two phase flow problems [J]. Journal of Computational Physics, 2005, 202(2): 664–698. DOI: 10.1016/j.jcp.2004.07.019.
|
[28] |
GROVE J W. Pressure-velocity equilibrium hydrodynamics models [J]. Acta Mathematica Scientia, 2010, 30B(2): 563–594.
|
[29] |
ZHANG F. Shock wave science and technology reference library: Vol.6 [M]. Berlin: Springer-Verlag Berlin Heidelberg, 2012.
|
[30] |
STRANG G. On the construction and comparison of difference schemes [J]. SIAM Journal of Numerical and Analysis, 1968, 5: 506–517. DOI: 10.1137/0705041.
|
[31] |
LEVEQUE R J. Wave propagation algorithms for multi-dimensional hyperbolic systems [J]. Journal of Computational Physics, 1997, 131(1): 327–353.
|
[32] |
ZHONG X L. Additive semi-implicit Runge-Kutta schemes for computing high-speed nonequilibrium reactive flows [J]. Journal of Computational Physics, 1996, 128: 19–31. DOI: 10.1006/jcph.1996.0193.
|
[33] |
FICKETT W, DAVIS W C. Detonation: theory and experiment [M]. New York: Dover, 1979.
|
[34] |
TARVER C M, MCGUIRE E M. Reactive flow modeling of the interaction of TATB detonation waves with inert materials [C] // The 12th International Symposium on Detonation. San Diego, California, 2002: 641−649.
|