CHENG Yihao, WANG Mingyang, WANG Derong, SONG Chunming,  YUE  Songlin, TAN Yizhong. Discussion on essences of static resistance of two types of material under penetration[J]. Explosion And Shock Waves, 2020, 40(6): 061101. doi: 10.11883/bzycj-2019-0443
Citation: CHENG Yihao, WANG Mingyang, WANG Derong, SONG Chunming,  YUE  Songlin, TAN Yizhong. Discussion on essences of static resistance of two types of material under penetration[J]. Explosion And Shock Waves, 2020, 40(6): 061101. doi: 10.11883/bzycj-2019-0443

Discussion on essences of static resistance of two types of material under penetration

doi: 10.11883/bzycj-2019-0443
  • Received Date: 2019-11-19
  • Rev Recd Date: 2019-12-27
  • Available Online: 2020-04-25
  • Publish Date: 2020-06-01
  • Based on cavity expansion theories, the very essences of static target resistance, i.e. Rt of plastic and brittle materials are discussed by comparing the difference of dynamic behaviors in near region of penetration, and some suggestions about applications of brittle materials for penetration are given. The summary of discussion is shown as follows. Firstly, Rt is the mean and time-averaged stress on the cross section of the projectile, which is the resistance of target materials in solid state against local cavity expanding. The specific value of Rt varies withphysical and mechanical properties of materials, penetration models, impact velocity and other factors, and thus is not an intrinsic property of material. Secondly, for the non-deformable projectile penetrating plastic materials, static cavity expansion theory is proper to predict Rt. For semi-hydrodynamic penetration cases, the results of static cavity expansion theory should be modified. Thirdly, Rt of brittle materials mainly depends on fractured materials, while it is weakly related to intact materials and not completely positively related to uniaxial compressive strength of intact materials. If penetration velocity is relatively low, the strengthening effect of Rt of brittle materials by penetration velocity increasing should be considered in terms of internal-friction. If penetration velocity is high enough, the intrinsic and constant resistance of brittle materials is realized, which is named as dynamic hardness. Fourthly, the key measures to increase Rt of brittle materials are to reduce the amplitude of hoop tensile stress following the peak compressive stress, to lower the crack velocity of materials and to restrain the fragmentation degree of materials. These can be solved by increasing external confining pressure and intensifying the tensile strength and fracture toughness of materials. Furthermore, it is suggested that the dynamic properties of fractured materials should be emphasized to increase the precision of numerical calculations of brittle materials under penetration.
  • [1]
    ANDERSON C E. Analytical models for penetration mechanics: a review [J]. International Journal of Impact Engineering, 2017, 108: 3–26. DOI: 10.1016/j.ijimpeng.2017.03.018.
    [2]
    FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
    [3]
    HILL R. The mathematical theory of plasticity [M]. Oxford: Oxford University Press, 1998.
    [4]
    FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets [J]. International Journal of Solids and Structures, 1997, 34(31/32): 4127–4146.
    [5]
    FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [6]
    HE T, WEN H M, GUO X J. A spherical cavity expansion model for penetration of ogival-nosed projectiles into concrete targets with shear-dilatancy [J]. ActaMechanicaSinica, 2011, 27(6): 1001–1012.
    [7]
    彭永, 方秦, 吴昊, 等. 对弹体侵彻混凝土靶体阻力函数计算公式的探讨 [J]. 工程力学, 2015, 32(4): 112–119.

    PENG Y, FANG Q, WU H, et al. Discussion on the resistance forcing function of projectiles penetrating into concrete targets [J]. Engineering Mechanics, 2015, 32(4): 112–119.
    [8]
    KONG X Z, WU H, FANG Q. Rigid and eroding projectile penetration into concrete targets based on am extended dynamic cavity expansion model [J]. International Journal of Impact Engineering, 2017, 100: 13–22. DOI: 10.1016/j.ijimpeng.2016.10.005.
    [9]
    卢正操, 张元迪, 文鹤鸣, 等. 长杆弹侵彻半无限混凝土靶的理论研究 [J]. 现代应用物理, 2018, 9(4): 040102.

    LU Z C, ZHANG Y D, WEN H M, et al. Theoretical study on the penetration of long rods into semi-infinite concrete target [J]. Modern Applied Physics, 2018, 9(4): 040102.
    [10]
    FORRESTAL M J. Penetration into dry porous rock [J]. International Journal of Solids and Structures, 1986, 22(12): 1485–1986.
    [11]
    FREW D J, FORRESTAL M J, HANCHAK S J. Penetration experiments withlimestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
    [12]
    张德志, 张向荣, 林俊德, 等. 高强钢弹对花岗岩正侵彻的实验研究 [J]. 岩石力学与工程学报, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.

    ZHANG D Z, ZHANG X R, LIN J D, et al. Penetration experiments for normal impact into granite targets with high-strength steel projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.
    [13]
    LI J C, MA G W, YU M H. Penetration analysis for geo-material based on unified strength criterion [J]. International Journal of Impact Engineering, 2008, 35: 1154–1163. DOI: 10.1016/j.ijimpeng.2008.01.003.
    [14]
    SATAPATHY S, BLESS S. Calculation of penetration resistance of brittle materials using spherical cavity expansion analysis [J]. Mechanics of Materials, 1996, 23: 323–330. DOI: 10.1016/0167-6636(96)00022-1.
    [15]
    GALANOV B A, KARTUZOV V V, IVANOV S M. New analytical model of expansion of spherical cavity in brittle material basedon the concepts of mechanics of compressible porous and powder materials [J]. International Journal of Impact Engineering, 2008, 35: 1522–1528. DOI: 10.1016/j.ijimpeng.2008.07.016.
    [16]
    ROSENBERG Z, DEKEL E. A numerical study of the cavity expansion process and its application to long-rod penetration mechanics [J]. International Journal of Impact Engineering, 2008, 35: 147–154. DOI: 10.1016/j.ijimpeng.2007.01.005.
    [17]
    TATE A. A theory for the deceleration of long rods after impact [J]. Journal of the Mechanics and Physics of Solids, 1967, 15(6): 387–399. DOI: 10.1016/0022-5096(67)90010-5.
    [18]
    RIEDELW, WICKLEIN M, THOMA K. Shock properties of conventional and high strength concrete: experimental and mesomechanical analysis [J]. International Journal of Impact Engineering, 2008, 35: 155–171. DOI: 10.1016/j.ijimpeng.2007.02.001.
    [19]
    李干, 王明洋, 宋春明, 等. 超高速飞片撞击花岗岩实验及其动态力学性能研究 [C] // 第六届全国工程安全与防护学术会议. 湘潭: 中国岩石力学与工程学会工程安全与防护分会, 2018.
    [20]
    PETERSEN CF. Shock wave studies of selected rocks [D]. California: Stanford University, 1969.
    [21]
    王明洋, 李杰, 李海波, 等. 岩石的动态压缩行为与超高速动能弹毁伤效应计算 [J]. 爆炸与冲击, 2018, 38(6): 1200–1217. DOI: 10.11883/bzycj-2018-0173.

    WANG M Y, LI J, LI H B, et al. Dynamic compression behavior of rock and simulation of damage effects of hypervelocity kinetic energy bomb [J]. Explosion and Shock Waves, 2018, 38(6): 1200–1217. DOI: 10.11883/bzycj-2018-0173.
    [22]
    ROSENBERG Z, TSALIAH J. Applying Tate’s model for the interaction of long rod projectiles with ceramic targets [J]. International Journal of Impact Engineering, 1990, 9(2): 247–251. DOI: 10.1016/0734-743X(90)90016-O.
    [23]
    FORRESTAL M J, TZOU D Y, ASKARI E, et al. Penetration into ductile metal targets with rigid spherical-nose rods [J]. International Journal of Impact Engineering, 1995, 16(5/6): 699–710.
    [24]
    ROSENBERG Z, DEKEL E. On the deep penetration of deforming long rods [J]. International Journal of Solids and Structures, 2010, 47: 238–250. DOI: 10.1016/j.ijsolstr.2009.09.030.
    [25]
    TATE A. Long rod penetration models: Part Ⅱ: extensions to the hydrodynamic theory of penetration [J]. International Journal of Mechanical Sciences, 1986, 28(9): 599–612. DOI: 10.1016/0020-7403(86)90075-5.
    [26]
    WALKER J D, ANDERSON C E. A time-dependent model for long-rod penetration [J]. International Journal of ImpactEngineering, 1995, 16(1): 19–48.
    [27]
    ROSENBERG Z, DEKEL E. The deep penetration of concrete targets by rigid rods: revisited [J]. International Journal of Protective Structure, 2010, 1: 125–144. DOI: 10.1260/2041-4196.1.1.125.
    [28]
    ZHANG M H, SHIM V P, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of ImpactEngineering, 2005, 31: 825–841. DOI: 10.1016/j.ijimpeng.2004.04.009.
    [29]
    GRADY D E. Shock-wave compression of brittle solids [J]. Mechanics of Materials, 1998, 29: 181–203.
    [30]
    LUNDBORG N. Strength of rock-like materials [J]. International Journal of Rock Mechanics and Mining Sciences, 1968, 5: 427–454. DOI: 10.1016/0148-9062(68)90046-6.
    [31]
    ROSENBERG Z. On the relation between the Hugoniot elastic limit and the yield strength of brittle materials [J]. Journal of Applied Physics, 1993, 74(1): 752–753. DOI: 10.1063/1.355247.
    [32]
    王礼立. 应力波基础[M]. 北京: 国防工业出版社, 2005.
    [33]
    胡进军, 谢礼立. 地震超剪切破裂研究现状 [J]. 地球科学进展, 2011, 26(1): 39–47.

    HU J J, XIE L L. Review of the state-of-art researches on earthquake super-shear rupture [J]. Advance in Earth Science, 2011, 26(1): 39–47.
    [34]
    SATAPATHY S, BLESS S. Cavity expansion resistance of brittle materials obeying a two-curve pressure-shear behavior [J]. Journal of Applied Physics, 2000, 88(7): 4004–4012. DOI: 10.1063/1.1288007.
    [35]
    BAVDEKAR S, PARSARD G, SUBHASH G, et al. Animproved dynamic expanding cavity model for high-pressureand high-strain rate responseofceramics [J]. International Journal of Solids and Structures, 2017, 26: 39–47.
    [36]
    STERNBERG J. Material properties determining the resistance of ceramics to high velocity penetration [J]. Journal of Applied Physics, 1989, 65(9): 3417–3424. DOI: 10.1063/1.342659.
    [37]
    KOZHUSHKO A A, RYKOVA I I, SINANI A B. Resistance of ceramics to penetration at impact velocities above 5 km/s [J]. Journal de Physique IV, 1991, 1(C3): C3–117. 1.
    [38]
    ISBELL W M, ANDERSON C E, ASAY J R, et al. Penetration mechanics research in the former Soviet Union [R]. San Diego, California: Science Applications International Corp, 1992.
    [39]
    VLASOVA M V, KAKAZEI N G, KOVTUN V I. Failure of self-bonded silicon carbide under dynamic pressure [J]. Powder Metallurgy and Metal Ceramics, 1988, 27(4): 325–329.
    [40]
    徐建波. 长杆弹对混凝土的侵彻特性研究[D]. 长沙: 国防科学技术大学, 2001.
    [41]
    刘桂武, 倪长也, 金峰, 等. 陶瓷/金属复合装甲抗弹约束效应述评 [J]. 西安交通大学学报, 2011, 45(3): 7–15.

    LIU G W, NI C Y, JIN F, et al. Review of anti-ballistic confinement effects of ceramic-metal composite armor [J]. Journal of Xi’an Jiaotong University, 2011, 45(3): 7–15.
    [42]
    徐松林, 单俊芳, 王鹏飞, 等. 三轴应力状态下混凝土的侵彻性能研究 [J]. 爆炸与冲击, 2019, 39(7): 071101. DOI: 10.11883/bzycj-2019-0034.

    XU S L, SHAN J F, WANG P F, et al. Penetration performance of concrete under triaxial stress [J]. Explosion and Shock Waves, 2019, 39(7): 071101. DOI: 10.11883/bzycj-2019-0034.
    [43]
    蒙朝美, 宋殿义, 蒋志刚, 等. 多边形钢管约束混凝土靶抗侵彻性能试验研究 [J]. 振动与冲击, 2018, 37(13): 14–19.

    MENG C M, SONG D Y, JIANG Z G, et al. Tests for anti-penetration performance of polygonal steel tube-confined concrete targets [J]. Journal of Vibration and Shock, 2018, 37(13): 14–19.
    [44]
    任劼, 党发宁, 马宗源, 等. 复杂地应力条件下聚能射流装药侵彻深部砂岩穿透深度研究 [J]. 岩石力学与工程学报, 2018, 37(3): 679–688.

    REN J, DANG F N, MA Z Y, et al. Penetration depth of shaped charge into deep sandstone under complex geostress [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 679–688.
    [45]
    FAN P X, WANG M Y, SONG C M. Anti-strike capability of steel-fiber reactive powder concrete [J]. Defence Science Journal, 2013, 63(4): 363–368. DOI: 10.14429/dsj.63.2407.
  • Relative Articles

    [1]QIAN Bingwen, ZHOU Gang, LI Mingrui, CHEN Chunlin, GAO Pengfei, SHEN Zikai, MA Kun. Influences of material properties of a projectile on hypervelocity penetration depth[J]. Explosion And Shock Waves, 2024, 44(10): 103302. doi: 10.11883/bzycj-2022-0310
    [2]MA Fulin, YANG Nana, ZHAO Tianyou, CHEN Zhipeng, YAO Xiongliang. Peridynamic damage simulation of ship composite structures subjected to combined action of shock wave and fragments[J]. Explosion And Shock Waves, 2022, 42(3): 033304. doi: 10.11883/bzycj-2021-0080
    [3]LIU Yongyou, YANG Huawei, ZHANG Jie, WANG Zhiyong, WANG Zhihua. A resistance model for a rigid flat projectile penetrating a reinforced concrete target[J]. Explosion And Shock Waves, 2020, 40(3): 033301. doi: 10.11883/bzycj-2018-0389
    [4]CHEN Jianliang, LI Jicheng. Ballistic behavior of tungsten fiber/metallic glass matrix composite segmented rods[J]. Explosion And Shock Waves, 2020, 40(6): 063201. doi: 10.11883/bzycj-2019-0379
    [5]YANG Deqing, WU Binghong, ZHANG Xiangwen. Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core[J]. Explosion And Shock Waves, 2019, 39(6): 065102. doi: 10.11883/bzycj-2018-0060
    [6]SUN Qiang, LI Xuedong, YAO Tengfei, GAO Chun. Experimental study on crack propagation of brittle materials based on DIC under explosive loading[J]. Explosion And Shock Waves, 2019, 39(10): 103102. doi: 10.11883/bzycj-2018-0308
    [7]DING Yuanyuan, ZHANG Zhen, LAI Huawei, WANG Yonggang. A Lagrangian inverse analysis technique for studying dynamic mechanical properites of brittle materials based on digital image correlation[J]. Explosion And Shock Waves, 2018, 38(6): 1310-1316. doi: 10.11883/bzycj-2018-0049
    [8]Yi Hongsheng, Xu Songlin, Shan Junfang, Zhang Ming. Fracture characteristics of brittle particles at different loading velocities[J]. Explosion And Shock Waves, 2017, 37(5): 913-922. doi: 10.11883/1001-1455(2017)05-0913-10
    [9]Wu Xutao, Liao Li. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design[J]. Explosion And Shock Waves, 2017, 37(4): 705-711. doi: 10.11883/1001-1455(2017)04-0705-07
    [10]Wan Wen -qian, Yu Dao-qiang, Peng Fei, Wang Wei -ming, Yang Tian -hai. Formation and terminal effect of an explosively -formed penetrator made by energetic materials[J]. Explosion And Shock Waves, 2014, 34(2): 235-240. doi: 10.11883/1001-1455(2014)02-0235-06
    [11]Hu Shi-sheng, Wang Li-li, Song Li, Zhang Lei. Review of the development of Hopkinson pressure bar technique in China[J]. Explosion And Shock Waves, 2014, 34(6): 641-657. doi: 10.11883/1001-1455(2014)06-0641-17
    [12]Lin Hua-ling, Ding Yu-qing, Tang Wen-hui. Factors influencing numerical simulation of concrete penetration[J]. Explosion And Shock Waves, 2013, 33(4): 425-429. doi: 10.11883/1001-1455(2013)04-0425-05
    [13]Duan Zhong, Zhou Feng-hua. Effects of defects on fragmentation processes of brittle materials[J]. Explosion And Shock Waves, 2013, 33(1): 11-20. doi: 10.11883/1001-1455(2013)01-0011-10
    [14]YAN Cheng, OU Zhuo-cheng, DUAN Zhuo-ping, HUANG Feng-lei. Strain-rateeffectsondynamicstrengthofbrittlematerials[J]. Explosion And Shock Waves, 2011, 31(4): 423-427. doi: 10.11883/1001-1455(2011)04-0423-05
    [15]ZHAO Guang-ming, SONG Shun-cheng. Animprovedreproducingkernelparticlemethod fornonlineardynamicalpenetrationprocess[J]. Explosion And Shock Waves, 2010, 30(4): 355-360. doi: 10.11883/1001-1455(2010)04-0355-06
    [16]PI Ai-guo, HUANG Feng-lei. Elastic-plastic dynamic response of slender projectiles penetrating into 2024-O aluminum targets[J]. Explosion And Shock Waves, 2008, 28(3): 252-260. doi: 10.11883/1001-1455(2008)03-0252-09
    [17]WANG Yuan-bo, WANG Xiao-jun, BIAN Liang, YU Yu-miao. CDM model and its application to numerical simulation on fiber-reinforced laminate under penetration[J]. Explosion And Shock Waves, 2008, 28(2): 172-177. doi: 10.11883/1001-1455(2008)02-0172-06
    [18]ZHOU Feng-hua, WANG Yong-gang. Factors controlling sizes of brittle fragments due to impact loadings[J]. Explosion And Shock Waves, 2008, 28(4): 298-303. doi: 10.11883/1001-1455(2008)04-0298-06
    [19]PI Ai-guo, HUANG Feng-lei. Dynamic behavior of a slender projectile on oblique penetrating into concrete target[J]. Explosion And Shock Waves, 2007, 27(4): 331-338. doi: 10.11883/1001-1455(2007)04-0331-08
    [20]CHEN Xiao-wei, ZHANG Fang-ju, YANG Shi-quan, XIE Ruo-ze, GAO Hai-ying, XU Ai-ming, JIN Jian-ming, QU Ming. Mechanics of structural design of EPW(Ⅲ): Investigations on the reduced-scale tests[J]. Explosion And Shock Waves, 2006, 26(2): 105-214. doi: 10.11883/1001-1455(2006)02-0105-10
  • Cited by

    Periodical cited type(3)

    1. 邵伟,范锦彪,耿宇飞,王玮. 基于微元法的侵彻体弹头摩擦升温计算方法. 探测与控制学报. 2022(02): 34-40 .
    2. 吴学志,程怡豪,宋春明,王德荣,王可佳. 高速侵彻下弹体纵向应力分布规律与变形破坏关联机制的数值计算研究. 防护工程. 2022(02): 30-36 .
    3. 邹德波,赵铮. 冲击强度对爆炸切割脆性材料的影响研究. 兵器装备工程学报. 2021(08): 100-105 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (4466) PDF downloads(118) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return