Volume 40 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
LANG Lin, ZHU Zheming, DENG Shuai, NIU Caoyuan, WAN Duanying, WANG Lei. Dynamic crack growth and crack arrest law based on arc bottom specimen[J]. Explosion And Shock Waves, 2020, 40(9): 093201. doi: 10.11883/bzycj-2019-0448
Citation: LANG Lin, ZHU Zheming, DENG Shuai, NIU Caoyuan, WAN Duanying, WANG Lei. Dynamic crack growth and crack arrest law based on arc bottom specimen[J]. Explosion And Shock Waves, 2020, 40(9): 093201. doi: 10.11883/bzycj-2019-0448

Dynamic crack growth and crack arrest law based on arc bottom specimen

doi: 10.11883/bzycj-2019-0448
  • Received Date: 2019-11-23
  • Rev Recd Date: 2020-02-24
  • Publish Date: 2020-09-01
  • In order to study the crack growth and crack arrest law of the brittle materials, a large-sized trapezoidal opening crack with arc bottom (TOCAB) configuration specimen was proposed. The impact tests were carried out on the TOCAB specimens with radians of 0°, 60°, 90° and 120° under the drop hammer impact device. The crack growth speed was obtained by using the distance between the two resistance wires divided by the break time of the resistance wire of the crack propagation gauge, and crack propagation gauge (CPG) was used to monitor the crack initiation time and expansion time. The crack growth behavior of the TOCAB specimen was numerically simulated by using the finite difference software AUTODYN. And the crack growth process and the crack arrest law were numerically studied. The critical dynamic stress intensity factor of the moving crack was calculated based on the experimental-numerical method and the finite element software ABAQUS. Both experimental and numerical results show that the three arc-bottom specimens have a crack-stopping effect on the moving crack, andthe TOCAB configuration specimen is suitable for studying the crack arrest problem. And the crack growth path obtained in the numerical calculation is basically consistent with the experimental results, which verifies the validity of the numerical model. And the critical dynamic stress intensity factor at the time of crack initiation and crack arrest is greater than that at the time of the crack growth.
  • loading
  • [1]
    YANG R S, DING C X, YANG L Y, et al. Behavior and law of crack propagation in the dynamic-static superimposed stress field [J]. Journal of Testing and Evaluation, 2018, 46(6): 2540–2548. DOI: 10.1520/JTE20170271.
    [2]
    张盛, 鲁义强, 王启智. 用P-CCNBD试样测定岩石动态扩展韧度和观察动态止裂现象 [J]. 岩土力学, 2017, 38(11): 3095–3105. DOI: 10.16285/j.rsm.2017.11.003.

    ZHANG S, LU Y Q, WANG Q Z. Measurement of dynamic fracture propagation toughness of rock and observation of dynamic arrest phenomenon using P-CCNBD specimens [J]. Rock and Soil Mechanics, 2017, 38(11): 3095–3105. DOI: 10.16285/j.rsm.2017.11.003.
    [3]
    李炼, 杨丽萍, 曹富, 等. 冲击加载下的砂岩动态断裂全过程的实验和分析 [J]. 煤炭学报, 2016, 41(8): 1912–1922. DOI: 10.13225/j.cnki.jccs.2016.0161.

    LI L, YANG L P, CAO F, et al. Complete dynamic fracture process of sandstone under impact loading: experiment and analysis [J]. Journal of China Coal Society, 2016, 41(8): 1912–1922. DOI: 10.13225/j.cnki.jccs.2016.0161.
    [4]
    VULIĆ N, JECIĆ S, GRUBIŠIĆ V. Validation of crack arrest technique by numerical modelling [J]. International Journal of Fatigue, 1997, 19(4): 283–291. DOI: 10.1016/S0142-1123(97)00008-X.
    [5]
    SONG P S, SHIEH Y L. Stop drilling procedure for fatigue life improvement [J]. International Journal of Fatigue, 2004, 26(12): 1333–1339. DOI: 10.1016/j.ijfatigue.2004.04.009.
    [6]
    WU H, IMAD A, BENSEDDIQ N, et al. On the prediction of the residual fatigue life of cracked structures repaired by the stop-hole method [J]. International Journal of Fatigue, 2010, 32(4): 670–677. DOI: 10.1016/j.ijfatigue.2009.09.011.
    [7]
    MURDANI A, MAKABE C, SAIMOTO A, et al. A crack-growth arresting technique in aluminum alloy [J]. Engineering Failure Analysis, 2008, 15(4): 302–310. DOI: 10.1016/j.engfailanal.2007.02.005.
    [8]
    NATECHE T, MELIANI M H, MATVIENKO Y G, et al. Drilling repair index (DRI) based on two-parameter fracture mechanics for crack arrest holes [J]. Engineering Failure Analysis, 2016, 59: 99–110. DOI: 10.1016/j.engfailanal.2015.08.035.
    [9]
    CHEN N Z. A stop-hole method for marine and offshore structures [J]. International Journal of Fatigue, 2016, 88: 49–57. DOI: 10.1016/j.ijfatigue.2016.03.010.
    [10]
    李盟, 朱哲明, 肖定军, 等. 煤矿岩巷爆破掘进过程中周边眼对裂纹扩展止裂机理 [J]. 煤炭学报, 2017, 42(7): 1691–1699. DOI: 10.13225/j.cnki.jccs.2016.1226.

    LI M, ZHU Z M, XIAO D J, et al. Mechanism of crack arrest by peripheral holes during mine rock roadway excavation under blasting [J]. Journal of China Coal Society, 2017, 42(7): 1691–1699. DOI: 10.13225/j.cnki.jccs.2016.1226.
    [11]
    杨仁树, 许鹏, 岳中文, 等. 圆孔缺陷与Ⅰ型运动裂纹相互作用的试验研究 [J]. 岩土力学, 2016, 37(6): 1597–1602. DOI: 10.16285/j.rsm.2016.06.009.

    YANG R S, XU P, YUE Z W, et al. Laboratory study of interaction between a circular hole defect and mode Ⅰ moving crack [J]. Rock and Soil Mechanics, 2016, 37(6): 1597–1602. DOI: 10.16285/j.rsm.2016.06.009.
    [12]
    张财贵, 曹富, 李炼, 等. 采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度 [J]. 力学学报, 2016, 48(3): 624–635. DOI: 10.6052/0459-1879-15-349.

    ZHANG C G, CAO F, LI L, et al. Determination of dynamic fracture initiation, propagation, and arrest toughness of rock using SCDC specimen [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 624–635. DOI: 10.6052/0459-1879-15-349.
    [13]
    王蒙, 朱哲明, 谢军. 岩石Ⅰ-Ⅱ复合型裂纹动态扩展SHPB实验及数值模拟研究 [J]. 岩石力学与工程学报, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.

    WANG M, ZHU Z M, XIE J. Experimental and numerical studies of the mixed-mode Ⅰ and Ⅱ crack propagation under dynamic loading using SHPB [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.
    [14]
    WANG M, ZHU Z M, DONG Y Q, et al. Study of mixed-mode Ⅰ/Ⅱ fractures using single cleavage semicircle compression specimens under impacting loads [J]. Engineering Fracture Mechanics, 2017, 177: 33–44. DOI: 10.1016/j.engfracmech.2017.03.042.
    [15]
    GRÉGOIRE D, MAIGRE H, COMBESCURE A. New experimental and numerical techniques to study the arrest and the restart of a crack under impact in transparent materials [J]. International Journal of Solids and Structures, 2009, 46(18−19): 3480–3491. DOI: 10.1016/j.ijsolstr.2009.06.003.
    [16]
    汪小梦, 朱哲明, 施泽彬, 等. 基于VB-SCSC岩石试样的动态断裂韧度测试方法研究 [J]. 岩石力学与工程学报, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.

    WANG X M, ZHU Z M, SHI Z B, et al. A method measuring dynamic fracture toughness of rock using VB-SCSC specimens [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.
    [17]
    LANG L, ZHU Z M, ZHANG X S, et al. Investigation of crack dynamic parameters and crack arresting technique in concrete under impacts [J]. Construction and Building Materials, 2019, 199: 321–334. DOI: 10.1016/j.conbuildmat.2018.12.029.
    [18]
    朱婷, 胡德安, 王毅刚. PMMA材料裂纹动态扩展及止裂研究 [J]. 应用力学学报, 2017, 34(2): 230–236. DOI: 10.11776/cjam.34.02.B017.

    ZHU T, HU D A, WANG Y G. Study on dynamic crack propagation and arrest of PMMA materials [J]. Chinese Journal of Applied Mechanics, 2017, 34(2): 230–236. DOI: 10.11776/cjam.34.02.B017.
    [19]
    ZHU Z M, MOHANTY B, XIE H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. DOI: 10.1016/j.ijrmms.2006.09.002.
    [20]
    ZHU Z M. Numerical prediction of crater blasting and bench blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(6): 1088–1096. DOI: 10.1016/j.ijrmms.2009.05.009.
    [21]
    ZHU Z M, WANG C, KANG J M, et al. Study on the mechanism of zonal disintegration around an excavation [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 88–95. DOI: 10.1016/j.ijrmms.2013.12.017.
    [22]
    董玉清, 朱哲明, 王蒙, 等. 中低速冲击载荷作用下SCT岩石试样Ⅰ型裂纹的动态扩展行为 [J]. 中南大学学报(自然科学版), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.

    DONG Y Q, ZHU Z M, WANG M, et al. Mode I crack dynamic propagation behavior of SCT specimens under medium-low speed impact load [J]. Journal of Central South University (Science and Technology), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.
    [23]
    DAI F, XIA K W, TANG L Z. Rate dependence of the flexural tensile strength of Laurentian granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 469–475. DOI: 10.1016/j.ijrmms.2009.05.001.
    [24]
    PERSSON A. CM1−a simple model for the dynamic deformation and failure properties of brittle materials [C] // CARLSSON R, JOHANSSON T, KAHLMAN L. 4th International Symposium on Ceramic Materials and Components for Engines. Dordrecht: Springer, 1992. DOI: 10.1007/978-94-011-2882-7_106.
    [25]
    WONG L N Y, LI H Q. Numerical study on coalescence of two pre-existing coplanar flaws in rock [J]. International Journal of Solids and Structures, 2013, 50(22−23): 3685–3706. DOI: 10.1016/j.ijsolstr.2013.07.010.
    [26]
    WONG L N Y, EINSTEIN H H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 239–249. DOI: 10.1016/j.ijrmms.2008.03.006.
    [27]
    BROOKS Z, ULM F J, EINSTEIN H H. Role of microstructure size in fracture process zone development of marble [C] // Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium. Chicago: American Rock Mechanics Association, 2012: 1748−1757.
    [28]
    Century Dynamics Inc. AUTODYN theory manual [M]. Pittsburgh: Century Dynamics Inc, 2005.
    [29]
    ZEHNDER A T. Fracture mechanics [M]. New York: Springer, 2012.
    [30]
    CHEN L S, KUANG J H. A modified linear extrapolation formula for determination of stress intensity factors [J]. International Journal of Fracture, 1992, 54(1): R3–R8. DOI: 10.1007/BF00040859.
    [31]
    FREUND L B. Dynamic fracture mechanics [M]. New York: Cambridge University Press, 1990.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (3196) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return