Citation: | JIA Hailin, ZHAI Rupeng, LI Dihui, XIANG Haijun, YANG Yongqin. Differences of premixed methane-air explosion in pipelines suppressed by three ultrafine water mists containing different salts[J]. Explosion And Shock Waves, 2020, 40(8): 082201. doi: 10.11883/bzycj-2019-0456 |
[1] |
毛宗强. 氢能: 我国未来的清洁能源 [J]. 化工学报, 2004, 55(S1): 296–302.
MAO Z Q. Hydrogen: a future clean energy carrier in China [J]. Journal of Chemical Industry and Engineering, 2004, 55(S1): 296–302.
|
[2] |
RAZUS D, MOVILEANU C, BRINZEA V, et al. Explosion pressures of hydrocarbon-air mixtures in closed vessels [J]. Journal of Hazardous Materials, 2006, 135(1−3): 58–65. DOI: 10.1016/j.jhazmat.2005.10.061.
|
[3] |
KURDYUMOV V N, MATALON M. Flame acceleration in long narrow open channels [J]. Proceedings of the Combustion Institute, 2013, 34(1): 865–872. DOI: 10.1016/j.proci.2012.07.045.
|
[4] |
WANG C, HUANG F L, ADDAI E K, et al. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 302–310. DOI: 10.1016/j.jlp.2016.05.021.
|
[5] |
罗振敏, 王涛, 程方明, 等. 小尺寸管道内二氧化碳抑制甲烷爆炸效果的实验及数值模拟 [J]. 爆炸与冲击, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.
LUO Z M, WANG T, CHENG F M, et al. Experimental and numerical studies on the suppression of methane explosion using CO2 in a mini vessel [J]. Explosion and Shock Waves, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.
|
[6] |
陈鹏, 李艳超, 黄福军, 等. 方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟 [J]. 爆炸与冲击, 2017, 37(1): 21–26. DOI: 10.11883/1001-1455(2017)01-0021-06.
CHEN P, LI Y C, HUANG F J, et al. LES approach to premixed methane/air flame propagating in the closed duct with a square-hole obstacle [J]. Explosion and Shock Waves, 2017, 37(1): 21–26. DOI: 10.11883/1001-1455(2017)01-0021-06.
|
[7] |
周宁, 王文秀, 张国文, 等. 障碍物对丙烷-空气爆炸火焰加速的影响 [J]. 爆炸与冲击, 2018, 38(5): 1106–1114. DOI: 10.11883/bzycj-2017-0109.
ZHOU N, WANG W X, ZHANG G W, et al. Effect of obstacles on flame acceleration of propane-air explosion [J]. Explosion and Shock Waves, 2018, 38(5): 1106–1114. DOI: 10.11883/bzycj-2017-0109.
|
[8] |
ZHANG P P, ZHOU Y H, CAO X Y, et al. Mitigation of methane/air explosion in a closed vessel by ultrafine water fog [J]. Safety Science, 2014, 62: 1–7. DOI: 10.1016/j.ssci.2013.07.027.
|
[9] |
ADIGA K C, HATCHER JR R F, SHEINSON R S, et al. A computational and experimental study of ultra fine water mist as a total flooding agent [J]. Fire Safety Journal, 2007, 42(2): 150–160. DOI: 10.1016/j.firesaf.2006.08.010.
|
[10] |
PEI B, YU M G, CHEN L W, et al. Experimental study on the synergistic inhibition effect of nitrogen and ultrafine water mist on gas explosion in a vented duct [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 546–553. DOI: 10.1016/j.jlp.2016.02.005.
|
[11] |
XU H L, LI Y, ZHU P, et al. Experimental study on the mitigation via an ultra-fine water mist of methane/coal dust mixture explosions in the presence of obstacles [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 815–820. DOI: 10.1016/j.jlp.2013.02.014.
|
[12] |
ZHU C J, LIN B Q, JIANG B Y, et al. Numerical simulation of blast wave oscillation effects on a premixed methane/air explosion in closed-end ducts [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 851–861. DOI: 10.1016/j.jlp.2013.02.013.
|
[13] |
ZHOU Y H, BI M S, QI F. Experimental research into effects of obstacle on methane-coal dust hybrid explosion [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(1): 127–130. DOI: 10.1016/j.jlp.2011.07.003.
|
[14] |
BATTERSBY P N, AVERILL A F, INGRAM J M, et al. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist: Part 2: mitigation of vented deflagrations [J]. International Journal of Hydrogen Energ, 2012, 37(24): 19258–19267. DOI: 10.1016/j.ijhydene.2012.10.029.
|
[15] |
裴蓓, 韦双明, 陈立伟, 等. CO2-超细水雾对CH4/air初期爆炸特性的影响 [J]. 爆炸与冲击, 2019, 39(2): 025402. DOI: 10.11883/bzycj-2018-0147.
PEI B, WEI S M, CHEN L W, et al. Effect of CO2-ultrafine water mist on initial explosion characteristics of CH4/air [J]. Explosion and Shock Waves, 2019, 39(2): 025402. DOI: 10.11883/bzycj-2018-0147.
|
[16] |
纪虹, 杨克, 黄维秋, 等. 超细水雾协同甲烷氧化菌降解与抑制甲烷爆炸的实验研究 [J]. 化工学报, 2017, 68(11): 4461–4468. DOI: 10.11949/j.issn.0438-1157.20170568.
JI H, YANG K, HUANG W Q, et al. Methane degradation and explosion inhibition by using ultrafine water mist containing methane oxidative bacteria-inorganic salt [J]. CIESC Journal, 2017, 68(11): 4461–4468. DOI: 10.11949/j.issn.0438-1157.20170568.
|
[17] |
GU R, WANG X S, XU H L. Experimental study on suppression of methane explosion with ultra-fine water mist [J]. Fire Safety Science, 2010, 19(2): 51–59. DOI: 10.3969/j.issn.1004-5309.2010.02.001.
|
[18] |
MODAK A U, ABBUD-MADRID A, DELPLANQUE J P, et al. The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen-, methane-, and propane-air flames [J]. Combustion and Flame, 2006, 144(1−2): 103–111. DOI: 10.1016/j.combustflame.2005.07.003.
|
[19] |
杨克, 纪虹, 邢志祥, 等. 含草酸钾的超细水雾抑制甲烷爆炸的特性 [J]. 化工学报, 2018, 69(12): 5359–5369. DOI: 10.11949/j.issn.0438-1157.20180671.
YANG K, JI H, XING Z X, et al. Characteristics on methane explosion suppression by ultrafine water mist containing potassium oxalate [J]. CIESC Journal, 2018, 69(12): 5359–5369. DOI: 10.11949/j.issn.0438-1157.20180671.
|
[20] |
JOSEPH P, NICHOLS E, NOVOZHILOV V. A comparative study of the effects of chemical additives on the suppression efficiency of water mist [J]. Fire Safety Journal, 2013, 58: 221–225. DOI: 10.1016/j.firesaf.2013.03.003.
|
[21] |
余明高, 安安, 赵万里, 等. 含添加剂细水雾抑制瓦斯爆炸有效性试验研究 [J]. 安全与环境学报, 2011, 11(4): 149–153. DOI: 10.3969/j.issn.1009-6094.2011.04.034.
YU M G, AN A, ZHAO W L, et al. On the inhibiting effectiveness of the water mist with additives to the gas explosion [J]. Journal of Safety and Environment, 2011, 11(4): 149–153. DOI: 10.3969/j.issn.1009-6094.2011.04.034.
|
[22] |
余明高, 杨勇, 裴蓓, 等. N2双流体细水雾抑制管道瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.
YU M G, YANG Y, PEI B, et al. Experimental study of methane explosion suppression by nitrogen twin-fluid water mist [J]. Explosion and Shock Waves, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.
|
[23] |
GAN B, LI B, JIANG H P, et al. Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives [J]. Journal of Hazardous Materials, 2018, 351: 346–355. DOI: 10.1016/j.jhazmat.2018.03.017.
|
[24] |
陈晓坤, 林滢, 罗振敏, 等. 水系抑制剂控制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2006, 31(5): 603–606. DOI: 10.3321/j.issn:0253-9993.2006.05.012.
CHEN X K, LIN Y, LUO Z M, et al. Experiment study on controlling gas explosion by water-depressant [J]. Journal of China Coal Society, 2006, 31(5): 603–606. DOI: 10.3321/j.issn:0253-9993.2006.05.012.
|
[25] |
CAO X Y, REN J J, BI M S, et al. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist [J]. Journal of Hazardous Materials, 2017, 324: 489–497. DOI: 10.1016/j.jhazmat.2016.11.017.
|
[26] |
CAO X Y, REN J J, ZHOU Y H, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive [J]. Journal of Hazardous Materials, 2015, 285: 311–318. DOI: 10.1016/j.jhazmat.2014.11.016.
|
[27] |
CAO X Y, REN J J, BI M S, et al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 352–360. DOI: 10.1016/j.jlp.2016.06.012.
|
[28] |
NFPA. NFPA 750 Standard for the installation of water mist fire protection systems [S]. Quincy, MA: National Fire Protection Association, 2000.
|
[29] |
秦俊, 廖光煊, 王喜世, 等. 细水雾抑制火旋风的实验研究 [J]. 自然灾害学报, 2002, 11: 60–65. DOI: 10.3969/j.issn.1004-4574.2002.04.010.
QIN J, LIAO G X, WANG X S, et al. Experimental study on extinguishment of fire whirlwind by water mist [J]. Journal of Natural Disasters, 2002, 11: 60–65. DOI: 10.3969/j.issn.1004-4574.2002.04.010.
|
[30] |
AKIRA Y, TOICHIRO O, WATARU E, et al. Experimental and numerical investigation of flame speed retardation by water mist [J]. Combustion and Flame, 2015, 162: 1772–1777. DOI: 10.1016/j.combustflame.2014.11.038.
|
[31] |
邓军, 田志辉, 罗振敏, 等. Mg(OH)2/CO2抑爆瓦斯实验研究 [J]. 煤矿安全, 2013, 44: 4–6. DOI: 10.13347/j.cnki.mkaq.2013.10.014.
DENG J, TIAN Z H, LUO Z M, et al. Experimental research on suppressing gas explosion by Mg(OH)2/CO2 [J]. Safety in Coal Mines, 2013, 44: 4–6. DOI: 10.13347/j.cnki.mkaq.2013.10.014.
|
[1] | LIU Bowen, LONG Renrong, ZHANG Qingming, JU Yuanyuan, ZHONG Xianzhe, WANG Haiyang, LIU Wenjin. Study on the corner overpressure characteristics of concentrated reflected shock wave due to internal blast in cabin[J]. Explosion And Shock Waves, 2023, 43(1): 012201. doi: 10.11883/bzycj-2022-0232 |
[2] | LI Yanchao, LIANG Bo, JIANG Yuting. Prediction of natural gas explosion overpressure considering external turbulence[J]. Explosion And Shock Waves, 2023, 43(11): 115402. doi: 10.11883/bzycj-2023-0098 |
[3] | LI Jingye, JIANG Xinsheng, YU Binbin, WANG Chunhui, WANG Zituo. Visualization experimental research of oil gas vapor cloud deflagration in large-scale unconfined space[J]. Explosion And Shock Waves, 2022, 42(3): 035401. doi: 10.11883/bzycj-2021-0176 |
[4] | LI Yanchao, BI Mingshu, GAO Wei. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation[J]. Explosion And Shock Waves, 2021, 41(7): 072101. doi: 10.11883/bzycj-2020-0140 |
[5] | QIN Yi, CHEN Xiaowei, HUANG Wei. Overpressure prediction of combustible gas explosion in confined space[J]. Explosion And Shock Waves, 2020, 40(3): 032202. doi: 10.11883/bzycj-2019-0175 |
[6] | LIU Chong, DU Yang, LIANG Jianjun, ZHANG Peili, MENG Hong. Large eddy simulation of gasoline/air mixture explosion in a semi-confined space with bilateral branches[J]. Explosion And Shock Waves, 2020, 40(6): 064202. doi: 10.11883/bzycj-2019-0408 |
[7] | LI Xiaobin, ZHANG Ruijie, CUI Liwei, ZHANG Qingli. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea[J]. Explosion And Shock Waves, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090 |
[8] | LI Yanchao, BI Mingshu, GAO Wei. Explosion pressure prediction considering the flame instabilities[J]. Explosion And Shock Waves, 2020, 40(1): 012101. doi: 10.11883/bzycj-2019-0004 |
[9] | JIA Hailin, XIANG Haijun, LI Dihui, ZHAI Rupeng. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride[J]. Explosion And Shock Waves, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268 |
[10] | PEI Bei, WEI Shuangming, CHEN Liwei, PAN Rongkun, WANG Yan, YU Minggao, LI Jie. Effect of CO2-ultrafine water mist on initial explosion characteristics of CH4/Air[J]. Explosion And Shock Waves, 2019, 39(2): 025402. doi: 10.11883/bzycj-2018-0147 |
[11] | HUANG Chuyuan, CHEN Xianfeng, ZHANG Hongming, TANG Wenwen, CHEN Xi, ZHANG Wenbo, LIU Xuanya. Experimental investigation on suppression of starch flame by ultrafine silicon dioxide powders[J]. Explosion And Shock Waves, 2018, 38(2): 324-330. doi: 10.11883/bzycj-2016-0235 |
[12] | WANG Xinying, WANG Shushan, LU Xi, WANG Jianmin. Overpressure-impulse damage criterion of air shock waves on biological targets[J]. Explosion And Shock Waves, 2018, 38(1): 106-111. doi: 10.11883/bzycj-2017-0031 |
[13] | RAO Guoning, ZHOU Li, SONG Shuzhong, XIE Lifeng, LI Bin, PENG Jinhua. Explosion overpressure measurement and power evaluation of FAE[J]. Explosion And Shock Waves, 2018, 38(3): 579-585. doi: 10.11883/bzycj-2016-0245 |
[14] | Yu Minggao, Yang Yong, Pei Bei, Niu Pan, Zhu Xinna. Experimental study of methane explosion suppression by nitrogen twin-fluid water mist[J]. Explosion And Shock Waves, 2017, 37(2): 194-200. doi: 10.11883/1001-1455(2017)02-0194-07 |
[15] | Yu Jian-liang, Yan Xing-qing. Suppression of flame speed and explosion overpressure by aluminum silicate wool[J]. Explosion And Shock Waves, 2013, 33(4): 363-368. doi: 10.11883/1001-1455(2013)04-0363-06 |
1. | 周刚,孔阳,崔洋洋,钱新明,傅砺烨,张琦. 城市地下排水管道中燃气爆炸及气-液两相耦合作用规律. 爆炸与冲击. 2024(03): 90-104 . ![]() | |
2. | 陈凯峰,杨克,纪虹,邢志祥,蒋军成. 粒径影响改性凹凸棒土抑制甲烷爆炸实验研究. 工程热物理学报. 2024(06): 1857-1862 . ![]() | |
3. | 杨克,李雪瑞,纪虹,郑凯,邢志祥,蒋军成. 改性煤矸石-海藻酸钠粉体对管道内甲烷/空气爆炸的抑爆实验. 爆炸与冲击. 2024(07): 174-187 . ![]() | |
4. | 段玉龙,龙凤英,黄俊,俞树威,卜云兵. 水雾喷洒时间对滑移装置下甲烷爆炸特性影响. 安全与环境学报. 2023(01): 64-71 . ![]() | |
5. | 段征,路长,班成伟,刘金刚,郭洪江,李明月. 封闭支管条件下ABC干粉抑爆机制研究. 火工品. 2023(02): 72-76 . ![]() | |
6. | 王秋红,蒋夏夏,代爱萍. 基于Gaussian的甲烷爆炸微观反应计算分析. 中国安全生产科学技术. 2022(06): 178-184 . ![]() | |
7. | 段玉龙,李元兵,杨燕铃,龙凤英,俞树威,黄俊,卜云兵. 细水雾协同滑动装置对甲烷/空气预混气体爆炸特性的影响. 高压物理学报. 2021(05): 182-188 . ![]() |