Volume 40 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
ZHANG Jinghui, YU Yonggang. Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths[J]. Explosion And Shock Waves, 2020, 40(10): 104201. doi: 10.11883/bzycj-2019-0478
Citation: ZHANG Jinghui, YU Yonggang. Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths[J]. Explosion And Shock Waves, 2020, 40(10): 104201. doi: 10.11883/bzycj-2019-0478

Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths

doi: 10.11883/bzycj-2019-0478
  • Received Date: 2019-12-25
  • Rev Recd Date: 2020-03-02
  • Publish Date: 2020-10-05
  • To investigate the influence of water depth on the evolution characteristics of the muzzle flow field of an underwater submerged launched ballistic gun, a two-dimensional axisymmetric transient muzzle flow field model was established. The fluid volume function multiphase flow model, standard k-ε turbulence model, Schnerr-Sauer cavitation model, combined with dynamic grid and user-defined function technology, are used to numerically simulate the evolution process of underwater muzzle flow field. An underwater visualized shooting experimental platform for a ballistic gun was built. The evolution process of the muzzle flow field when the 12.7 mm ballistic gun was fully submerged in water was observed, and the rationality of the numerical model was verified. Based on this, the evolution characteristics of the muzzle flow field at different water depths (h=1−100 m) are analyzed and compared. Through comparison, it is found that within the range of the muzzle flow field, the projectile displacement meets the exponential function with time under different water depths; the deeper the water, the longer it takes for the typical wave structure of the muzzle flow field to form, and the lower the peak temperature and pressure of the gas at the axial Mach disc, the smaller the pressure oscillation amplitude, the faster it stabilizes. but in the radial direction, the deeper the water depth, the longer the duration of pressure oscillations.
  • loading
  • [1]
    李鸿志, 姜孝海, 王杨, 等. 中间弹道学[M]. 北京: 北京理工大学出版社, 2015: 10.
    [2]
    姜孝海, 范宝春, 李鸿志. 膛口流场动力学过程数值研究 [J]. 应用数学和力学, 2008, 29(3): 316–324. DOI: 10.3879/j.issn.1000-0887.2008.03.006.

    JIANG X H, FAN B C, LI H Z. Numerical investigations on the dynamic process of the muzzle flow [J]. Applied Mathematics and Mechanics, 2008, 29(3): 316–324. DOI: 10.3879/j.issn.1000-0887.2008.03.006.
    [3]
    吴伟, 许厚谦, 王亮, 等. 含化学反应膛口流场的无网格数值模拟 [J]. 爆炸与冲击, 2015, 35(5): 625–632. DOI: 10.11883/1001-1455(2015)05-0625-08.

    WU W, XU H Q, WANG L, et al. Numerical simulation of a muzzle flow field involving chemical reactions based on gridless method [J]. Explosion and Shock Waves, 2015, 35(5): 625–632. DOI: 10.11883/1001-1455(2015)05-0625-08.
    [4]
    陈川琳, 黄陈磊, 许辉, 等. 小口径步枪弹头后效期运动特性试验与数值研究 [J]. 兵工学报, 2019, 40(2): 265–275. DOI: 10.3969/j.issn.1000-1093.2019.02.006.

    CHEN C L, HUANG C L, XU H, et al. Experimental and numerical research on motion characteristics of a small caliber bullet in muzzle flows [J]. Acta Armamentarii, 2019, 40(2): 265–275. DOI: 10.3969/j.issn.1000-1093.2019.02.006.
    [5]
    张欣尉, 余永刚. 水下发射对机枪膛口温度场影响的数值分析 [J]. 含能材料, 2017, 25(11): 932–938. DOI: 10.11943/j.issn.1006-9941.2017.11.008.

    ZHANG X W, YU Y G. Numerical analysis for the effect of underwater launch on the temperature field of machine gun muzzle [J]. Chinese Journal of Energetic Materials, 2017, 25(11): 932–938. DOI: 10.11943/j.issn.1006-9941.2017.11.008.
    [6]
    张欣尉, 余永刚, 莽珊珊. 装药参数对水下机枪密封式膛口流场影响的数值分析 [J]. 兵工学报, 2018, 39(1): 18–27. DOI: 10.3969/j.issn.1000-1093.2018.01.002.

    ZHANG X W, YU Y G, MANG S S. Numerical analysis of influence of charge parameters on flow field around sealed muzzle of underwater machine gun [J]. Acta Armamentarii, 2018, 39(1): 18–27. DOI: 10.3969/j.issn.1000-1093.2018.01.002.
    [7]
    HU Z T, YU Y G. Expansion characteristics of multiple wall jets in cylindrical observation chamber [J]. Applied Thermal Engineering, 2017, 113: 1396–1409. DOI: 10.1016/j.applthermaleng.2016.11.140.
    [8]
    ZHAO J J, YU Y G. Flow structure of conical distributed multiple gas jets injected into a water chamber [J]. Journal of Mechanical Science and Technology, 2017, 31(4): 1683–1691. DOI: 10.1007/s12206-017-0316-9.
    [9]
    ZHOU L L, YU Y G. Study on interaction characteristics between multi gas jets and water during the underwater launching process [J]. Experimental Thermal and Fluid Science, 2017, 83: 200–206. DOI: 10.1016/j.expthermflusci.2017.01.007.
    [10]
    郝宗睿, 王乐勤, 吴大转. 水下喷气推进高速射流场数值研究 [J]. 浙江大学学报(工学版), 2010, 44(2): 408–412. DOI: 10.3785/j.issn.1008-973X.2010.02.036.

    HAO Z R, WANG L Q, WU D Z. Numerical simulation of high-speed jet flow field of underwater jet propulsion craft [J]. Journal of Zhejiang University (Engineering Science), 2010, 44(2): 408–412. DOI: 10.3785/j.issn.1008-973X.2010.02.036.
    [11]
    唐云龙, 李世鹏, 谢侃, 等. 有相变的水下超音速燃气射流数值模拟 [J]. 哈尔滨工程大学学报, 2016, 37(9): 1237–1243. DOI: 10.11990/jheu.201506010.

    TANG Y L, LI S P, XIE K, et al. Numerical simulation of underwater supersonic gas jets with phase transitions [J]. Journal of Harbin Engineering University, 2016, 37(9): 1237–1243. DOI: 10.11990/jheu.201506010.
    [12]
    张焕好, 郭则庆, 王瑞琦, 等. 水下超声速气体射流的初始流动特性研究 [J]. 振动与冲击, 2019, 38(6): 88–93, 131. DOI: 10.13465/j.cnki.jvs.2019.06.013.

    ZHANG H H, GUO Z Q, WANG R Q, et al. Initial flow characteristics of an underwater supersonic gas jet [J]. Journal of Vibration and Shock, 2019, 38(6): 88–93, 131. DOI: 10.13465/j.cnki.jvs.2019.06.013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (3327) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return