Citation: | ZHANG Di, YANG Jun, ZENG Dan, CHEN Tainian, GAO Jinming, TANG Yu. Damage grades of reinforced concrete bent structures against blast[J]. Explosion And Shock Waves, 2020, 40(12): 121405. doi: 10.11883/bzycj-2020-0012 |
[1] |
Department of Defense. Design of buildings to resist progressive collapse: UFC4-023-03 [S]. Washington: U S Department of Defense, 2005: 1−232.
|
[2] |
WANG W, ZHANG D, LU F Y, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading [J]. International Journal of Impact Engineering, 2012, 49: 158–164. DOI: 10.1016/j.ijimpeng.2012.03.010.
|
[3] |
YAO S J, ZHANG D, LU F Y, et al. A combined experimental and numerical investigation on the scaling laws for steel box structures subjected to internal blast loading [J]. International Journal of Impact Engineering, 2017, 102: 36–46. DOI: 10.1016/j.ijimpeng.2016.12.003.
|
[4] |
武海军, 黄风雷, 陈利, 等. 动能弹侵彻钢筋混凝土相似性分析 [J]. 兵工学报, 2007, 28(3): 276–280. DOI: 10.3321/j.issn: 1000-1093.2007.03.005.
WU H J, HUANG F L, CHEN L, et al. Similarity law analyses of penetration behavior in reinforced concrete [J]. Acta Armamentarii, 2007, 28(3): 276–280. DOI: 10.3321/j.issn: 1000-1093.2007.03.005.
|
[5] |
杨亚东, 李向东, 王晓鸣, 等. 钢筋混凝土结构内爆炸相似模型试验研究 [J]. 南京理工大学学报, 2016, 40(2): 135–141. DOI: 10.14177/j.cnki.32-1397n.2016.40.02.002.
YANG Y D, LI X D, WANG X M, et al. Experimental study on similarity model of reinforced concrete structure under internal explosion [J]. Journal of Nanjing University of Science and Technology, 2016, 40(2): 135–141. DOI: 10.14177/j.cnki.32-1397n.2016.40.02.002.
|
[6] |
JAYASOORIYA R, THAMBIRATNAM D P, PERERA N J, et al. Blast and residual capacity analysis of reinforced concrete framed buildings [J]. Engineering Structures, 2011, 33(12): 3483–3495. DOI: 10.1016/j.engstruct.2011.07.011.
|
[7] |
CARTA G, STOCHINO F. Theoretical models to predict the flexural failure of reinforced concrete beams under blast loads [J]. Engineering Structures, 2013, 49: 306–315. DOI: 10.1016/j.engstruct.2012.11.008.
|
[8] |
SHI Y C, HAO H, Li Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001.
|
[9] |
师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D]. 天津: 天津大学, 2009: 1−8.
|
[10] |
汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究[D]. 长沙: 国防科学技术大学, 2012: 1−7.
|
[11] |
WANG W, ZHANG D, LU F Y, et al. The influence of load pulse shape on pressure-impulse diagrams of one-way RC slabs [J]. Structural Engineering and Mechanics, 2012, 42(3): 363–381. DOI: 10.12989/sem.2012.42.3.363.
|
[12] |
倪晋峰. 单层球面网壳基于CONWEP外爆响应分析及试验设计[D]. 哈尔滨: 哈尔滨工业大学, 2012: 13−19.
|
[13] |
中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2017: 1−284.
|
[14] |
中华人民共和国住房和城乡建设部. 钢结构设计标准规范:GB 50017—2017 [S]. 北京: 中国建筑工业出版社, 2018: 1−226.
|
[15] |
任光. 爆炸载荷下建构筑物连续倒塌数值模拟[D]. 北京: 北京理工大学, 2016: 1−6.
|
[16] |
郭春, 彭振斌. 建筑抗震中单桩摩阻力动力效应分析 [J]. 湖南大学学报(自然科学版), 2015, 42(3): 57–62. DOI: 10.16339/j.cnki.hdxbzkb.2015.03.009.
GUO C, PENG Z B. Analysis for the dynamic effect of friction forces of single pile [J]. Journal of Hunan University (Natural Sciences), 2015, 42(3): 57–62. DOI: 10.16339/j.cnki.hdxbzkb.2015.03.009.
|
[17] |
李世平, 张珂, 程龙. 基于ABAQUS软件研究载体桩在焦作某工程应用 [J]. 水利与建筑工程学报, 2018, 16(1): 28–35. DOI: 10.3969/j.issn.1672-1144.2018.01.006.
LI S P, ZHANG K, CHENG L. Research on application of ram-compacted piles with bearing base in Jiaozuo based on ABAQUS software [J]. Journal of Water Resources and Architectural Engineering, 2018, 16(1): 28–35. DOI: 10.3969/j.issn.1672-1144.2018.01.006.
|
[18] |
IMBALZANO G, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs [J]. Composite Structures, 2018, 183: 242–261. DOI: 10.1016/j.compstruct.2017.03.018.
|
[19] |
CASTEDO R, SEGARRA P, ALAÑON A, et al. Air blast resistance of full-scale slabs with different compositions: numerical modeling and field validation [J]. International Journal of Impact Engineering, 2015, 86: 145–156. DOI: 10.1016/j.ijimpeng.2015.08.004.
|
[20] |
SOUTIS C, MOHAMED G, HODZIC A. Modelling the structural response of GLARE panels to blast load [J]. Composite Structures, 2011, 94(1): 267–276. DOI: 10.1016/j.compstruct.2011.06.014.
|
[21] |
DU H, LI Z X. Numerical analysis of dynamic behavior of RC slabs under blast loading [J]. Transactions of Tianjin University, 2009, 15(1): 61–64. DOI: 10.1007/s12209-009-0012-7.
|
[22] |
杨军, 张帝, 任光. 基于CONWEP动态加载的建筑物爆破拆除数值模拟 [J]. 工程爆破, 2016, 22(5): 1–6, 91. DOI: 10.3969/j.issn.1006-7051.2016.05.001.
YANG J, ZHANG D, REN G. Numerical simulation of blasting demolition of buildings and structures based on CONWEP dynamic loading [J]. Engineering Blasting, 2016, 22(5): 1–6, 91. DOI: 10.3969/j.issn.1006-7051.2016.05.001.
|
[23] |
Department of Defense. Structures to resist the effects of accidental explosions: UFC3-340-02[S]. Washington: U S Department of Defense, 2008: 1042−1280.
|
[24] |
李天华. 爆炸荷载下钢筋混凝土板的动态响应及损伤评估[D]. 西安: 长安大学, 2012: 100−104.
|
[25] |
WEI X Y, HUANG T, LI N. Numerical derivation of pressure-impulse diagrams for unreinforced brick masonry walls [J]. Advanced Materials Research, 2011, 368-373: 1435–1439. DOI: 10.4028/www.scientific.net/AMR.368-373.1435.
|
[1] | HAN Minghai, LIU Chuang, LI Pengcheng, LIU Zihan, ZHANG Xianfeng. A study on structural response characteristics of projectile penetrating on granite target[J]. Explosion And Shock Waves, 2025, 45(1): 013302. doi: 10.11883/bzycj-2024-0145 |
[2] | QIAN Bingwen, ZHOU Gang, LI Mingrui, YIN Lixin, GAO Pengfei, CHEN Chunlin, MA Kun. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities[J]. Explosion And Shock Waves, 2024, 44(10): 103301. doi: 10.11883/bzycj-2022-0309 |
[3] | FENG XiaoWei, LI Juncheng, LU Yonggang, WANG Shouqian, LU Zhengcao, LIU Chuang, FU Dan. Characteristics of high-mass tungsten alloy kinetic projectile penetrating ultra-high strength steel targets at high velocity[J]. Explosion And Shock Waves, 2023, 43(9): 091410. doi: 10.11883/bzycj-2023-0016 |
[4] | WANG Xiaodong, YU Yilei, JIANG Zhaoxiu, MA Minghui, GAO Guangfa. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities[J]. Explosion And Shock Waves, 2022, 42(2): 023303. doi: 10.11883/bzycj-2021-0181 |
[5] | TAN Mengting, ZHANG Xianfeng, BAO Kuo, WEI Haiyang, HAN Guoqing. Characteristics of interface defeat and penetration during the impact between a ceramic armor and a long-rod projectile[J]. Explosion And Shock Waves, 2021, 41(3): 031406. doi: 10.11883/bzycj-2020-0338 |
[6] | LIU Junwei, ZHANG Xianfeng, LIU Chuang, CHEN Haihua, WANG Jipeng, XIONG Wei. Study on mass erosion model of projectile penetrating concrete at high speed considering variation of friction coefficient[J]. Explosion And Shock Waves, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250 |
[7] | WANG Kehui, ZHOU Gang, LI Ming, ZOU Huihui, WU Haijun, GENG Baogang, DUAN Jian, DAI Xianghui, SHEN Zikai, LI Pengjie, GU Renhong. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target[J]. Explosion And Shock Waves, 2021, 41(11): 113302. doi: 10.11883/bzycj-2020-0463 |
[8] | GUO Hu, HE Liling, CHEN Xiaowei, CHEN Gang, LI Jicheng. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates[J]. Explosion And Shock Waves, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428 |
[9] | OUYANG Hao, CHEN Xiaowei. Analysis of mass abrasion of high-speed penetrator influenced by aggregate in concrete target[J]. Explosion And Shock Waves, 2019, 39(7): 073102. doi: 10.11883/bzycj-2018-0068 |
[10] | WU Cheng, SHEN Xiaojun, WANG Xiaoming, YAO Wenjin. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target[J]. Explosion And Shock Waves, 2018, 38(6): 1364-1371. doi: 10.11883/bzycj-2017-0123 |
[11] | Chen Changhai, Hou Hailiang, Zhang Yuanhao, Dai Wenxi, Zhu Xi, Fang Zhiwei. Residual characteristics of moderately thick water-backed steel plates penetrated by high-velocity fragments[J]. Explosion And Shock Waves, 2017, 37(6): 959-965. doi: 10.11883/1001-1455(2017)06-0959-07 |
[12] | Song Meili, Li Wenbin, Wang Xiaoming, Feng Jun, Liu Zhilin. Experiments and dimensional analysis ofhigh-speed projectile penetration efficiency[J]. Explosion And Shock Waves, 2016, 36(6): 752-758. doi: 10.11883/1001-1455(2016)06-0752-07 |
[13] | Li Jie, Li Meng-shen, Li Hong, Shi Cun-cheng. Numerical modeling of projectile penetration into dry sand[J]. Explosion And Shock Waves, 2015, 35(5): 633-640. doi: 10.11883/1001-1455(2015)05-0633-08 |
[14] | Shen Chao, Pi Ai-guo, Liu Liu, Liu Jian-cheng, Huang Feng-lei. Discarding the sabot of a high-velocity projectile by a laminated wood target[J]. Explosion And Shock Waves, 2015, 35(5): 711-716. doi: 10.11883/1001-1455(2015)05-0711-06 |
[15] | HE Li-ling, CHEN Xiao-wei, FAN Ying. Metallographicobservationofreduced-scaleadvancedEPW afterhigh-speedpenetration[J]. Explosion And Shock Waves, 2012, 32(5): 515-522. doi: 10.11883/1001-1455(2012)05-0515-08 |
[16] | WANG Yi-nan, HUANG Feng-lei, DUAN Zhuo-ping. Bendingofprojectilewithsmallangleofattack duringhigh-speedpenetrationofconcretetargets[J]. Explosion And Shock Waves, 2010, 30(6): 598-606. doi: 10.11883/1001-1455(2010)06-0598-09 |
[17] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[18] | LIANG Bin, CHEN Xiao-wei, JI Yong-qiang, HUANG Han-jun, GAO Hai-ying, . Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon[J]. Explosion And Shock Waves, 2008, 28(1): 1-9. doi: 10.11883/1001-1455(2008)01-0001-09 |
[19] | PI Ai-guo, HUANG Feng-lei. Dynamic behavior of a slender projectile on oblique penetrating into concrete target[J]. Explosion And Shock Waves, 2007, 27(4): 331-338. doi: 10.11883/1001-1455(2007)04-0331-08 |
[20] | CHEN Xiao-wei, ZHANG Fang-ju, YANG Shi-quan, XIE Ruo-ze, GAO Hai-ying, XU Ai-ming, JIN Jian-ming, QU Ming. Mechanics of structural design of EPW(Ⅲ): Investigations on the reduced-scale tests[J]. Explosion And Shock Waves, 2006, 26(2): 105-214. doi: 10.11883/1001-1455(2006)02-0105-10 |