Volume 40 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
LUO Yusong, LI Weibing, CHEN Zhichuang, WANG Xiaoming, LI Wenbin. A freezing recovery method for metallic cylinder shells under internal explosive loading[J]. Explosion And Shock Waves, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041
Citation: LUO Yusong, LI Weibing, CHEN Zhichuang, WANG Xiaoming, LI Wenbin. A freezing recovery method for metallic cylinder shells under internal explosive loading[J]. Explosion And Shock Waves, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041

A freezing recovery method for metallic cylinder shells under internal explosive loading

doi: 10.11883/bzycj-2020-0041
  • Received Date: 2020-02-24
  • Rev Recd Date: 2020-06-29
  • Publish Date: 2020-10-05
  • Aimed to the recovery of expansive metal cylindrical shells subjected to internal explosive loading, the freezing recovery test method was developed to realize the freezing recovery of the metallic cylindrical shells at different moments after detonation. Based on the integrated shell, three improved structures were proposed, and the expansion and fracture processes of the four cylindrical shell structures under internal explosive loading were numerically simulated. It was found that the two-stage shell was the most beneficial to reduce the influence of the non-initiation end on the middle shell expected to be recovered. According to the selected optimal shell structure and the shape expansion characteristics of metal cylindrical shells at different moments after detonation, the freezing recovery devices matching with the shells were designed, and the freezing recovery tests were carried out. The test results show that the developed freezing recovery test method can realize the recovery of the expanded metallic cylindrical shells. The axial and radial dimensions of the recovery shells are in good agreement with the ideal design values, and the overall error can be controlled within 10%.
  • loading
  • [1]
    TAYLOR G I. Fragmentation of tubular bombs [M] // BATCHELOR O K. The Scientific Papers of Sir Geoffrey Ingram Taylor. Cambridge: Cambridge University Press, 1963: 387−390.
    [2]
    ZHU J J, LI W B, WANG X M, et al. Effect of tempering temperature on expansion and fracture mechanism of 40CrMnSiB steel cylinder shell [J]. International Journal of Impact Engineering, 2017, 107: 38–46. DOI: 10.1016/j.ijimpeng.2017.05.007.
    [3]
    陈醇. 三代炸药爆炸加载下战斗部壳体形变规律及破片性能研究[D]. 南京: 南京理工大学, 2015: 14−22.
    [4]
    朱建军, 李伟兵, 王晓鸣, 等. 回火温度对50SiMnVB钢壳体形成破片性能的影响 [J]. 兵工学报, 2015, 36(11): 2080–2086. DOI: 10.3969/j.issn.1000-1093.2015.11.009.

    ZHU J J, LI W B, WANG X M, et al. Effect of tempering temperature on the forming properties of fragments of 50SiMnVB steel shell [J]. Acta Armamentarii, 2015, 36(11): 2080–2086. DOI: 10.3969/j.issn.1000-1093.2015.11.009.
    [5]
    朱如意, 韩保红, 赫万恒. 杀爆榴弹战斗部静态爆炸效能仿真研究 [J]. 计算机仿真, 2015, 32(11): 18–21. DOI: 10.3969/j.issn.1006-9348.2015.11.005.

    ZHU R Y, HAN B H, HE W H. Simulation study on static explosive efficiency of blast fragmentation warhead [J]. Computer Simulation, 2015, 32(11): 18–21. DOI: 10.3969/j.issn.1006-9348.2015.11.005.
    [6]
    SINGH M, SUNEJA H R, BOLA M S, et al. Dynamic tensile deformation and fracture of metal cylinders at high strain rates [J]. International Journal of Impact Engineering, 2002, 27(9): 939–954. DOI: 10.1016/S0734-743X(02)00002-7.
    [7]
    WANG X Y, WANG S S, MA F. Experimental study on the expansion of metal cylinders by detonation [J]. International Journal of Impact Engineering, 2018, 114: 147–152. DOI: 10.1016/j.ijimpeng.2017.12.017.
    [8]
    GOLD V M, BAKER E L. A model for fracture of explosively driven metal shells [J]. Engineering Fracture Mechanics, 2008, 75(2): 275–289. DOI: 10.1016/j.engfracmech.2007.02.025.
    [9]
    HUANG G Y, LI W, FENG S S. Axial distribution of fragment velocities from cylindrical casing under explosive loading [J]. International Journal of Impact Engineering, 2015, 76: 20–27. DOI: 10.1016/j.ijimpeng.2014.08.007.
    [10]
    GUO Z W, HUANG G Y, LIU C M, et al. Velocity axial distribution of fragments from non-cylindrical symmetry explosive-filled casing [J]. International Journal of Impact Engineering, 2018, 118: 1–10. DOI: 10.1016/j.ijimpeng.2018.03.011.
    [11]
    SUN G J, WANG X Y, GAO W L, et al. Expansion fracture behavior of metallic cylindrical shell caused by explosive detonation [J]. IOP Conference Series: Earth and Environmental Science, 2019, 267(4): 042124.
    [12]
    禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究 [J]. 兵工学报, 2019, 40(7): 1418–1424. DOI: 10.3969/j.issn.1000-1093.2019.07.011.

    YU F Y, DONG X L, YU X L, et al. Fracture characteristics of metal cylinder shells with different charges [J]. Acta Armamentarii, 2019, 40(7): 1418–1424. DOI: 10.3969/j.issn.1000-1093.2019.07.011.
    [13]
    奥尔连科. 爆炸物理学: 下册 [M]. 孙承纬, 译. 北京: 科学出版社, 2011: 807−822.
    [14]
    陈志闯, 李伟兵, 朱建军, 等. 40CrMnSiB钢圆柱壳体膨胀断裂中间状态回收试验研究 [J]. 兵工学报, 2018, 39(11): 2137–2144. DOI: 10.3969/j.issn.1000-1093.2018.11.007.

    CHEN Z C, LI W B, ZHU J J, et al. Recovery experiment study of cylindrical 40CrMnSiB steel shell in intermediate phase of expanding fracture processes [J]. Acta Armamentarii, 2018, 39(11): 2137–2144. DOI: 10.3969/j.issn.1000-1093.2018.11.007.
    [15]
    TAYLOR G I. Analysis of the explosion of a long cylindrical bomb detonated at one end [M] // BATCHELOR G K. The Scientific Papers of Sir Geoffrey Ingram Taylor: Ⅲ. Cambridge: Cambridge University Press, 1963: 277−286.
    [16]
    任国武,郭昭亮,汤铁钢, 等. 高应变率加载下金属柱壳断裂的实验研究 [J]. 兵工学报, 2016, 37(1): 77–82. DOI: 10.3969/j.issn.1000-1093.2016.01.012.

    REN G W, GUO S L, TANG T G, et al. Experimental research on fracture of metal case under loading at high strain rate [J]. Acta Armamentarii, 2016, 37(1): 77–82. DOI: 10.3969/j.issn.1000-1093.2016.01.012.
    [17]
    陈志闯. 基于冻结回收的金属壳体膨胀断裂机制研究[D]. 南京: 南京理工大学, 2019: 27−28.
    [18]
    顾文彬, 胡亚峰, 徐浩铭, 等. 复合结构防爆罐抗爆特性的数值模拟 [J]. 含能材料, 2014, 22(3): 325–331. DOI: 10.3969/j.issn.1006-9941.2014.03.010.

    GU W B, HU Y F, XU H M, et al. Numerical simulation of blast resistant characteristics for the composite structure anti-explosion container [J]. Chinese Journal of Energetic Materials, 2014, 22(3): 325–331. DOI: 10.3969/j.issn.1006-9941.2014.03.010.
    [19]
    汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.

    TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (3193) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return