Volume 40 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
ZHAO Chunfeng, LU Xin, HE Kaicheng,  ZHANG  Zengde, WANG Jingfeng, LI Xiaojie. Blast resistance property of concrete shear wall with single-side steel plate[J]. Explosion And Shock Waves, 2020, 40(12): 121403. doi: 10.11883/bzycj-2020-0058
Citation: ZHAO Chunfeng, LU Xin, HE Kaicheng,  ZHANG  Zengde, WANG Jingfeng, LI Xiaojie. Blast resistance property of concrete shear wall with single-side steel plate[J]. Explosion And Shock Waves, 2020, 40(12): 121403. doi: 10.11883/bzycj-2020-0058

Blast resistance property of concrete shear wall with single-side steel plate

doi: 10.11883/bzycj-2020-0058
  • Received Date: 2020-03-06
  • Rev Recd Date: 2020-08-07
  • Publish Date: 2020-12-05
  • As a lateral resisting component, the single-side steel plate shear wall (SPSW) has a favorable capacity of energy dissipation and impact resistance, it has been gradually applied into the anti-seismic design of building and the anti-explosion design of protective structures. In this paper, three specimens of reinforced concrete slab (RCS), side steel plate shear wall slab (SSPSWS) and center steel plate shear wall slab (CSPWS) were designed and casted, the contact explosion experiment of SPSW were carried out in the field, and the nonlinear program LS-DYNA was used to establish finite model of SPSWS specimens, the dynamic response, failure models and anti-blast capacity of SPSWs subjected to contact explosion loads were compared and analyzed. The experimental results and numerical analysis show that there are three types of failure models occurred in the SPSWs, The midspan concrete of RCS occurrs penetration failure, and the reinforcement bar of RCS had larger bending deformation; while the concrete and steel plate of SSPSWS separate with the state of shear studs pulling out, losting its integrity and resistance capacity. The specimen of CSPWS is failure under upper concrete crushing, but the CSPWS specimen is still integrity and bearing capacity with strong connection performance. The midspan deflection of concrete slab and the splashing distance of concrete fragments are small. In addition, the capacity of bonding performance between concrete and steel plate of SSPSWS and CSPWS can be enhanced through equipping with reinforcing fabric, it can effectively reduce the cracking and peeling of the upper and lower layers of concrete and improve the integrity and anti-explosion capacity either .
  • loading
  • [1]
    ZHAO C F, CHEN J Y. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading [J]. Theoretical and Applied Fracture Mechanics, 2013, 63−64: 54–62. DOI: 10.1016/j.tafmec.2013.03.006.
    [2]
    ZHAO C F, WANG Q, LU X, et al. Numerical study on dynamic behaviors of NRC slabs in containment dome subjected to close-in blast loading [J]. Thin-Walled Structures, 2019, 135: 269–284. DOI: 10.1016/j.tws.2018.11.013.
    [3]
    李利莎, 谢清粮, 郑全平, 等. 基于Lagrange、ALE和SPH算法的接触爆炸模拟计算 [J]. 爆破, 2011, 28(1): 18–22. DOI: 10.3963/j.issn.1001-487X.2011.01.005.

    LI L S, XIE Q L, ZHENG Q P, et al. Numerical simulation of contact explosion based on Lagrange ALE and SPH [J]. BLASTING, 2011, 28(1): 18–22. DOI: 10.3963/j.issn.1001-487X.2011.01.005.
    [4]
    张想柏, 杨秀敏, 陈肇元, 等. 接触爆炸钢筋混凝土板的震塌效应 [J]. 清华大学学报(自然科学版), 2006(6): 765–768. DOI: 10.3321/j.issn:1000-0054.2006.06.004.

    ZHANG X B, YANG X M, CHEN Z Y, et al. Explosion spalling of reinforced concrete slabs with contact detonations [J]. Journal of Tsinghua University (Science and Technology), 2006(6): 765–768. DOI: 10.3321/j.issn:1000-0054.2006.06.004.
    [5]
    刘云, 卢红标, 周布奎, 等. 高强RC板的抗接触爆试验分析 [J]. 江南大学学报(自然科学版), 2012(5): 571–574. DOI: 10.3969/j.issn.1671-7147.2012.05.015.

    LIU Y, LU H B, ZHOU B K, et al. Experimental study on the contact explosion resistance performance of high strength RC slabs [J]. Journal of Jiangnan University (Nature Science Edition), 2012(5): 571–574. DOI: 10.3969/j.issn.1671-7147.2012.05.015.
    [6]
    JUN L, WU C Q, HONG H, et al. Experimental investigation of ultra-high performance concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2016, 93(7): 62–75. DOI: 10.1016/j.ijimpeng.2016.02.007.
    [7]
    王威, 张龙旭, 苏三庆, 等. 波形钢板剪力墙抗震性能试验研究 [J]. 建筑结构学报, 2018, 39(5): 36–44. DOI: 10.14006/j.jzjgxb.2018.05.005.

    WANG W, ZHANG L X, SU S Q, et al. Experimental research on seismic behavior of corrugated steel plate shear wall [J]. Journal of Building Structures, 2018, 39(5): 36–44. DOI: 10.14006/j.jzjgxb.2018.05.005.
    [8]
    聂建国, 樊健生, 黄远, 等. 钢板剪力墙的试验研究 [J]. 建筑结构学报, 2010, 31(9): 1–8. DOI: 10.14006/j.jzjgxb.2010.09.015.

    NIE J G, FAN J S, HUANG Y, et al. Experimental research on steel plate shear wall [J]. Journal of Building Structures, 2010, 31(9): 1–8. DOI: 10.14006/j.jzjgxb.2010.09.015.
    [9]
    ZHAO C F, LU X, WANG Q, et al. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading [J]. Engineering Structures, 2019, 196: 109337. DOI: 10.1016/j.engstruct.2019.109337.
    [10]
    ZHAO C F, WANG Q, LU X, et al. Blast resistance of small-scale RCS in experimental test and numerical analysis [J]. Engineering Structures, 2019, 199: 109610. DOI: 10.1016/j.engstruct.2019.109610.
    [11]
    SOHEL K M A, LIEW J Y R. Behavior of steel-concrete-steel sandwich slabs subject to impact load [J]. Journal of Constructional Steel Research, 2014, 100: 163–175. DOI: 10.1016/j.jcsr.2014.04.018.
    [12]
    LIEW J, WANG T. Novel steel-concrete-steel sandwich composite Plates subject to impact and blast load [J]. Advances in Structural Engineering, 2011, 14(4): 673–688. DOI: 10.1260/1369-4332.14.4.673.
    [13]
    中华人民共和国住房和城乡建设部.钢板剪力墙技术规程: JGJ/T 380—2015[S]. 北京: 中国建筑工业出版社, 2015.
    [14]
    赵春风, 王强, 王静峰, 等. 近场爆炸作用下核电厂安全壳穹顶钢筋混凝土板的抗爆性能 [J]. 高压物理学报, 2019, 33(2): 025101. DOI: 10.11858/gywlxb.20180598.

    ZHAO C F, WANG Q, WANG J F, et al. Blast resistance of containment dome reinforced concrete slab in NPP under close-in explosion [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025101. DOI: 10.11858/gywlxb.20180598.
    [15]
    HALLQUIST J O. LS-DYNA keyword user’s manual [M]. Livermore Software Technology Corporation, 2007.
    [16]
    BISCHOFF P H, PERRY S H. Compressive behavior of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016.
    [17]
    MALYAR L, CRAWFORD J, MORRILL K. K&C concrete material model release III: automated generation of material model input: TR-99-243 [R]. Karagozian and Case Structural Engineers, 2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(2)

    Article Metrics

    Article views (1560) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return