Volume 41 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LIU Sai, ZHANG Weigui, LYU Zhenhua. An FEM-SPH coupled model for simulating penetration of armor-piercing bullets into ceramic composite armors and glass composite armors[J]. Explosion And Shock Waves, 2021, 41(1): 014201. doi: 10.11883/bzycj-2020-0069
Citation: LIU Sai, ZHANG Weigui, LYU Zhenhua. An FEM-SPH coupled model for simulating penetration of armor-piercing bullets into ceramic composite armors and glass composite armors[J]. Explosion And Shock Waves, 2021, 41(1): 014201. doi: 10.11883/bzycj-2020-0069

An FEM-SPH coupled model for simulating penetration of armor-piercing bullets into ceramic composite armors and glass composite armors

doi: 10.11883/bzycj-2020-0069
  • Received Date: 2020-03-19
  • Rev Recd Date: 2020-07-10
  • Publish Date: 2021-01-05
  • To improve the ballistic simulation accuracy of ceramic composite armors and glass composite armors (transparent armors) against small-caliber armor piercing bullets, the new FEM (finite element method) -SPH (smooth particle hydrodynamics) coupled model was proposed, which replaced the FEM model and JC (Johnson-Cook) material model of the armor-piercing-bullet core of traditional FEM-SPH coupled model with the SPH model and JH2 (Johnson-Holmquist-ceramics) material model. The results show that the new FEM-SPH coupled model can effectively simulate bullet core fragmentation and reduce FEM-SPH coupled calculation amount. So it can improve the computation accuracy and efficiency. And the FEM element/SPH particle size and armor modeling size of the new FEM-SPH coupled model are optimized.
  • loading
  • [1]
    胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展 [J]. 力学学报, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.

    HU D A, HAN X, XIAO Y H, et al. Research developments of smoothed particle hydrodynamics method and its coupling with finite element method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.
    [2]
    陈斌, 罗夕容, 曾首义. 穿甲子弹侵彻陶瓷/钢靶板的数值模拟研究 [J]. 弹道学报, 2009, 21(1): 14–18.

    CHEN B, LUO X R, ZENG S Y. Simulation study on ceramic/mild steel targets penetrated by APP [J]. Journal of Ballistics, 2009, 21(1): 14–18.
    [3]
    卿尚波, 晏麓晖, 曾首义. 陶瓷靶的多片组合效应分析 [J]. 弹箭与制导学报, 2010, 30(3): 72–74. DOI: 10.15892/j.cnki.djzdxb.2010.03.019.

    QING S B, YAN L H, ZENG S Y. Studies on combinational effect of multi-ceramics [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(3): 72–74. DOI: 10.15892/j.cnki.djzdxb.2010.03.019.
    [4]
    孙素杰, 赵宝荣, 王军, 等. 不同背板对陶瓷复合装甲抗弹性能影响的研究 [J]. 兵器材料科学与工程, 2006, 29(2): 70–72. DOI: 10.3969/j.issn.1004-244X.2006.02.019.

    SUN S J, ZHAO B R, WANG J, et al. Study on the penetration performance of ceramic armors with different backing plate [J]. Ordnance Material Science and Engineering, 2006, 29(2): 70–72. DOI: 10.3969/j.issn.1004-244X.2006.02.019.
    [5]
    蒋志刚, 申志强, 曾首义, 等. 穿甲子弹侵彻陶瓷/钢复合靶板试验研究 [J]. 弹道学报, 2007, 19(4): 38–42. DOI: 10.3969/j.issn.1004-499X.2007.04.011.

    JIANG Z G, SHEN Z Q, ZENG S Y, et al. An experimental study on ceramic/mild steel targets against APP [J]. Journal of Ballistics, 2007, 19(4): 38–42. DOI: 10.3969/j.issn.1004-499X.2007.04.011.
    [6]
    JOHNSON G R, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures [J]. Journal of Applied Physics, 1999, 85(12): 8060–8073. DOI: 10.1063/1.370643.
    [7]
    BØRVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles [J]. International Journal of Impact Engineering, 2009, 36(7): 948–964. DOI: 10.1016/j.ijimpeng.2008.12.003.
    [8]
    CRONIN D S, BUI K, KAUFMANN C, et al. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA [C] // Proceedings of the 4th European LS-DYNA User Conference. Stuttgart, Germany: DY-NAmore GmbH, 2003: 47−60.
    [9]
    谢恒, 吕振华. 破片侵彻纤维复合材料板的有限元数值模拟 [J]. 清华大学学报(自然科学版), 2012, 52(1): 96–101. DOI: 10.16511/j.cnki.qhdxxb.2012.01.005.

    XIE H, LÜ Z H. Finite element simulation of FRP plates impacted by fragments [J]. Journal of Tsinghua University (Science and Technology), 2012, 52(1): 96–101. DOI: 10.16511/j.cnki.qhdxxb.2012.01.005.
    [10]
    XIAO J R, GAMA B A, GILLESPIE Jr J W. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading [J]. Composite Structures, 2007, 78(2): 182–196. DOI: 10.1016/j.compstruct.2005.09.001.
    [11]
    王元博. 纤维增强层合材料的抗弹性能和破坏机理研究[D]. 合肥: 中国科学技术大学, 2006: 87−89. DOI: 10.7666/d.y918786.
    [12]
    陈宇宏, 厉蕾. 轻型防弹玻璃的结构研究 [J]. 材料工程, 2002(6): 7–9; 36. DOI: 10.3969/j.issn.1001-4381.2002.06.002.

    CHEN Y H, LI L. Study on the structure of lightweight bulletproof glass [J]. Journal of Materials Engineering, 2002(6): 7–9; 36. DOI: 10.3969/j.issn.1001-4381.2002.06.002.
    [13]
    HOLMQUIST T J, JOHNSON G R, GRADY D E, et al. High strain rate properties and constitutive modeling of glass [C] // Proceedings of the 15th International Symposium on Ballistics. Jerusalem, Israel, 1995: 237−244.DOI: 10.2172/41367.
    [14]
    LI Z H, LAMBROS J. Strain rate effects on the thermomechanical behavior of polymers [J]. International Journal of Solids and Structures, 2001, 38(20): 3549–3562. DOI: 10.1016/s0020-7683(00)00223-7.
    [15]
    TI Y, CHEN D J. Mechanical and dynamic mechanical properties of polyurethane/Fe-octacarboxyl acid phthalocyanine blends [J]. Progress in Organic Coatings, 2013, 76(1): 119–124. DOI: 10.1016/j.porgcoat.2012.08.019.
    [16]
    曹侃, 汪洋, 王宇. 低温下聚碳酸酯冲击拉伸性能的实验研究 [J]. 兵工学报, 2010, 31(S1): 195–198.

    CAO K, WANG Y, WANG Y. Experimental study on impact tensile properties of polycarbonate at low temperature [J]. Acta Armamentarii, 2010, 31(S1): 195–198.
    [17]
    张龙辉, 张晓晴, 姚小虎, 等. 高应变率下航空透明聚氨酯的动态本构模型 [J]. 爆炸与冲击, 2015, 35(1): 51–56. DOI: 10.11883/1001-1455(2015)01-0051-06.

    ZHANG L H, ZHANG X Q, YAO X H, et al. Constitutive model of transparent aviation polyurethane at high strain rates [J]. Explosion and Shock Waves, 2015, 35(1): 51–56. DOI: 10.11883/1001-1455(2015)01-0051-06.
    [18]
    姚小虎, 张龙辉, 张晓晴, 等. 航空透明聚氨酯胶片动态力学性能实验研究 [J]. 航空学报, 2015, 36(7): 2236–2243. DOI: 10.7527/S1000-6893.2014.0281.

    YAO X H, ZHANG L H, ZHANG X Q, et al. Experimental study on dynamic mechanical behavior of aerospace- transparent polyurethane interlayer [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2236–2243. DOI: 10.7527/S1000-6893.2014.0281.
    [19]
    胡文军, 张方举, 田常津, 等. 聚碳酸酯的动态应力应变响应和屈服行为 [J]. 材料研究学报, 2007, 21(4): 439–443. DOI: 10.3321/j.issn: 1005-3093.2007.04.019.

    HU W J, ZHANG F J, TIAN C J, et al. Dynamic stress-strain response and yield behavior of polycarbonate [J]. Chinese Journal of Materials Research, 2007, 21(4): 439–443. DOI: 10.3321/j.issn: 1005-3093.2007.04.019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(7)

    Article Metrics

    Article views (1051) PDF downloads(266) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return