Citation: | MIAO Fuxing, WANG Hui, WANG Lili, HE Wenming, CHEN Xiabo, GONG Wenbo, DING Yuanyuan, HUAN Shi, XU Chong, XIE Yanqing, LU Yicheng, SHEN Lijun. Relationship between the blood-vessel coupling characteristics and the propagation of pulse waves[J]. Explosion And Shock Waves, 2020, 40(4): 041101. doi: 10.11883/bzycj-2020-0082 |
WANG L L, WANG H. Mechanics modeling and inverse analyses of pulse wave system from the view-point of traditional Chinese medicine [C]//Proceedings of the ASME 2016, 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: ASME, 2016. DOI: 10.1115/OMAE2016-55106.
|
王礼立, 王晖. 脉搏波系统的力学模型及反演兼对若干中医学问题的讨论 [J]. 力学学报, 2016, 48(6): 1416–1424. DOI: 10.6052/0459-1879-15-322.
WANG L L, WANG H. Mechanics modeling and inverse analyses of pulse waves system with discussions on some concepts in the traditional Chinese medicine [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1416–1424. DOI: 10.6052/0459-1879-15-322.
|
王琦. 中医体质学 [M]. 北京: 人民卫生出版社, 2009.
WANG Q. Constitutionology of Chinese medicine [M]. Beijing: People’s Medical Publishing House, 2009.
|
王晖. 体质的中医保健 [M]. 宁波: 宁波出版社, 2009.
WANG H. Traditional Chinese medicine health care of body constitutions [M]. Ningbo: Ningbo Press, 2009.
|
王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.
WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
|
HU C S, CHUNG Y F, YEH C C, et al. Temporal and spatial properties of arterial pulsation measurement using pressure sensor array [J]. Evidence-Based Complementary and Alternative Medicine, 2012, 2012: 745127. DOI: 10.1155/2012/745127.
|
XUE Y, SU Y, ZHANG C, et al. Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation [J]. Optics and Lasers in Engineering, 2017, 98: 76–82. DOI: 10.1016/j.optlaseng.2017.05.018.
|
MANCIA G, DE BACKER G, DOMINICZAK A, et al. 2007 Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) [J]. Journal of Hypertension, 2007, 25(6): 1105–1187. DOI: 10.1097/HJH.0b013e3281fc975a.
|
中国高血压防治指南修订委员会, 高血压联盟(中国), 中华医学会心血管病学分会, 等. 中国高血压防治指南(2018年修订版) [J]. 中国心血管杂志, 2019, 24(1): 24–56. DOI: 10.3969/j.issn.1007-5410.2019.01.002.
China Hypertension Prevention and Control Guidelines Revision Committee, Hypertension Alliance (China), Chinese Society of Cardiology, et al. 2018 Chinese guidelines for the management of hypertension [J]. Chinese Journal of Cardiovascular Medicine, 2019, 24(1): 24–56. DOI: 10.3969/j.issn.1007-5410.2019.01.002.
|
MOENS A J. Die pulskurve [M]. Leiden: Brill, 1878.
|
KORTEWEG D J. Ueber die Fortpflanzungsgeschwindigkeit des schalles in elastischen Röhren [J]. Annalen der Physik, 1878, 241(12): 525–542. DOI: 10.1002/andp.18782411206.
|
HUGHES D J, BABBS C F, GEDDES L A, et al. Measurements of Young’s modulus of elasticity of the canine aorta with ultrasound [J]. Ultrasonic Imaging, 1979, 1(4): 356–367. DOI: 10.1177/016173467900100406.
|
FUNG Y C. Biomechanics: circulation [M]. New York: Springer, 1997.
|
MA Y J, CHOI J, HOURLIER-FARGETTE A, et al. Relation between blood pressure and pulse wave velocity for human arteries [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(44): 11144–11149. DOI: 10.1073/pnas.1814392115.
|
TIMOSHENKO S P, GOODIER J N. Theory of elasticity [M]. 3rd ed. London: McGraw-Hill Book Company, 1970.
|
HUGHES D J, FEARNOT N E, BABBS C F, et al. Continuous measurement of aortic radius change in vivo with an intra-aortic ultrasonic catheter [J]. Medical and Biological Engineering and Computing, 1985, 23(3): 197–202. DOI: 10.1007/BF02446857.
|
URICK R J. A sound velocity method for determining the compressibility of finely divided substances [J]. Journal of Applied Physics, 1947, 18(11): 983–987. DOI: 10.1063/1.1697584.
|
WANG S H, LEE L P, LEE J S. A linear relation between the compressibility and density of blood [J]. The Journal of the Acoustical Society of America, 2001, 109(1): 390–396. DOI: 10.1121/1.1333419.
|
LAURENT S, GIRERD X, MOURAD J J, et al. Elastic modulus of the radial artery wall material is not increased in patients with essential hypertension [J]. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1994, 14(7): 1223–1231. DOI: 10.1161/01.ATV.14.7.1223.
|
王礼立, 王晖, 杨黎明, 等. 论脉搏波客观化和定量化研究的症结所在 [J]. 中华中医药杂志, 2017, 32(11): 4855–4863.
WANG L L, WANG H, YANG L M, et al. Crux of objectification and quantification of pulse waves [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2017, 32(11): 4855–4863.
|
WEBSTER J G. Design of pulse Oximeters [M]. Boca Raton: CRC Press, 1997.
|
LEWIS T. The factors influencing the prominence of the dicrotic wave [J]. The Journal of Physiology, 1906, 34(6): 414–429. DOI: 10.1113/jphysiol.1906.sp001165.
|
[1] | ZHANG Haipeng, PAN Zuanfeng, SI Doudou. Numerical simulation on dynamic response of reinforced concrete beams to secondary explosion[J]. Explosion And Shock Waves, 2024, 44(10): 101404. doi: 10.11883/bzycj-2024-0021 |
[2] | YANG Tengteng, GONG Li, DONG Zhouquan, DU Yunfei, CUI Yue. Dynamic response of flowing ice colliding with a sluice pier under hydrodynamic action[J]. Explosion And Shock Waves, 2023, 43(12): 123901. doi: 10.11883/bzycj-2023-0113 |
[3] | ZHANG Wenhao, YU Yonggang. Analysis of gas-eroding barrel characteristics based on fluid-solid interaction[J]. Explosion And Shock Waves, 2023, 43(3): 034201. doi: 10.11883/bzycj-2022-0390 |
[4] | ZHOU Lang, XU Chunguang. An algorithm for building structural damage under the effect of shock wave[J]. Explosion And Shock Waves, 2022, 42(10): 104201. doi: 10.11883/bzycj-2021-0415 |
[5] | WANG Lili, WANG Hui, DING Yuanyuan, CHEN Xiabo, YANG Liming, GONG Wenbo, HUAN Shi, MIAO Fuxing. Exploration of experimental study on constitutive relations of pulse waves[J]. Explosion And Shock Waves, 2022, 42(12): 121101. doi: 10.11883/bzycj-2022-0434 |
[6] | SI Peng, QIU Ming, LIAO Zhenqiang, SONG Jie, MA Longxu. Numerical simulation of two-phase flow in a side spray gun considering piston reset motion[J]. Explosion And Shock Waves, 2021, 41(8): 084201. doi: 10.11883/bzycj-2020-0252 |
[7] | ZHANG Hetao, NING Jianguo, XU Xiangzhao, MA Tianbao. A strong coupling prediction-correction immersed boundary method[J]. Explosion And Shock Waves, 2021, 41(9): 094201. doi: 10.11883/bzycj-2021-0129 |
[8] | GAO Yingjie, SUN Tiezhi, ZHANG Guiyong, YOU Tianqing, YIN Zhihong, ZONG Zhi. Flow characteristics and structure response of high-speed oblique water-entry for a revolution body[J]. Explosion And Shock Waves, 2020, 40(12): 123301. doi: 10.11883/bzycj-2020-0014 |
[9] | LI Zhijie, YOU Xiaochuan, LIU Zhanli, DU Zhibo, ZHANG Yi, YANG Ce, ZHUANG Zhuo. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves[J]. Explosion And Shock Waves, 2020, 40(1): 015901. doi: 10.11883/bzycj-2018-0348 |
[10] | WANG Hui, WANG Lili, MIAO Fuxing, GONG Wenbo, HUAN Shi, XU Chong. On “pump theory” and “wave theory” of cardiac function[J]. Explosion And Shock Waves, 2020, 40(11): 111101. doi: 10.11883/bzycj-2020-0386 |
[11] | HUANG Zhigang, SUN Tiezhi, YANG Biye, ZHANG Guiyong, ZONG Zhi. Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry[J]. Explosion And Shock Waves, 2019, 39(4): 043201. doi: 10.11883/bzycj-2017-0330 |
[12] | YE Linzheng, ZHU Xijing, WANG Jianqing. Fluid-solid coupling model of micro-jet impact from acoustic cavitation bubble collapses near a wall and pit inversion analysis[J]. Explosion And Shock Waves, 2019, 39(6): 062201. doi: 10.11883/bzycj-2018-0118 |
[13] | CHEN Yang, WU Liang, XU Feng, LU Shuai. Dynamic response of existing large oil storage tank under blasting excavation vibration[J]. Explosion And Shock Waves, 2018, 38(6): 1394-1403. doi: 10.11883/bzycj-2017-0128 |
[14] | Wang Lili, Hu Shisheng, Yang Liming, Dong Xinlong, Wang Hui. Talk about dynamic strength and damage evolution[J]. Explosion And Shock Waves, 2017, 37(2): 169-179. doi: 10.11883/1001-1455(2017)02-0169-11 |
[15] | Liu Yun-long, Wang Yu, Zhang A-man. Whipping responses of double cylindrical shell structures to underwater explosion based on DAA2[J]. Explosion And Shock Waves, 2014, 34(6): 691-700. doi: 10.11883/1001-1455(2014)06-0691-10 |
[16] | Guo Pan, Wu Wen-hua, Liu Jun, Wu Zhi-gang. Numerical simulation of fluid-structure interaction in defect-contained charge of solid rocket motor subjected to shock waves[J]. Explosion And Shock Waves, 2014, 34(1): 93-98. |
[17] | ZhouJie, TaoGang, PanBao-qing, ZhangHong-we. Mechanismofblasttraumatohumanthorax:Afiniteelementstudy[J]. Explosion And Shock Waves, 2013, 33(3): 315-321. doi: 10.11883/1001-1455(2013)03-0315-06 |
[18] | ZHOU Jie, TAO Gang, WANG Jian. Numericalsimulationoflunginjuryinducedbyshockwave[J]. Explosion And Shock Waves, 2012, 32(4): 418-422. doi: 10.11883/1001-1455(2012)04-0418-05 |
[19] | GUO Jun, YANG Wen-shan, YAO Xiong-liang, ZAHNG A-man, REN Shao-fei. Underwaterexplosioncalculationwithafieldseparationtechnique[J]. Explosion And Shock Waves, 2011, 31(3): 295-299. doi: 10.11883/1001-1455(2011)03-0295-05 |
[20] | LIAO Hua-lin, LI Gen-sheng. Influences of the pore-fluid coupling effect on impact stress in rocks impacted by water jets[J]. Explosion And Shock Waves, 2006, 26(1): 84-90. doi: 10.11883/1001-1455(2006)01-0084-07 |