Volume 41 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
XU Xiaoyuan, SUN Jinhua, LIU Xuanya. Numerical simulation of methane-air explosion in a connected device with volume fraction gradient[J]. Explosion And Shock Waves, 2021, 41(4): 045401. doi: 10.11883/bzycj-2020-0086
Citation: XU Xiaoyuan, SUN Jinhua, LIU Xuanya. Numerical simulation of methane-air explosion in a connected device with volume fraction gradient[J]. Explosion And Shock Waves, 2021, 41(4): 045401. doi: 10.11883/bzycj-2020-0086

Numerical simulation of methane-air explosion in a connected device with volume fraction gradient

doi: 10.11883/bzycj-2020-0086
  • Received Date: 2020-03-26
  • Rev Recd Date: 2020-10-10
  • Available Online: 2021-03-05
  • Publish Date: 2021-04-14
  • A connected vessel is a common typical chemical plant, and its explosion hazard is much higher than that of an independent vessel. In an actual explosion accident, the combustible gas volume fraction in the connected device presents a non-uniform state, and there is a volume fraction gradient. A connected device was chosen as the research object. The device was formed by connecting two cylindrical vessels with the volumes of 60 litres and 20 litres, respectively, through a square pipe as long as 3 meters, with a cross section of 35 mm×35 mm. To explore the methane-air explosion characteristics in the connected device with combustible gas volume fraction gradient, the Fluidyn software was applied to numerically simulate the methane-air explosions in the connected devices with uniform and non-uniform combustible gas volume fractions, respectively. The results show as follows. When the volume fraction of the methane in the connected device is uniform and ranges from 6.517% to 8.067% and the ignition is located in the center of the large vessel, the maximum explosion pressure, the maximum explosion pressure rise rate, the maximum temperature and the maximum velocity as well as their arrival times change linearily with the volume fraction of the methane. When the volume fraction of the methane in the large vessel of the connected device is 6.0%, the volume fraction gradient of the methane is 2.0% to 8.0%, and the ignition is located in the center of the large vessel, the maximum values of the parameters, including explosion pressure, explosion pressure rise rate, flame temperature and velocity, increase firstly and then decrease with increasing volume fraction gradient. When the ignition is located in the center of the large vessel, the maximum explosion pressure is in the small vessel, the maximum pressure rising rate is in the pipe connected to the large vessel, and the maximum flame velocity is in the pipe connected to the small vessel, and the flame velocity can reach 400-600 m/s. The research results can provide a theoretical guidance for preventing and controling combustible gas explosion accident in connected devices.
  • loading
  • [1]
    BARTKNECHT W. Explosion course prevention protection [M]. Berlin: Springer-Verlag, 1981.
    [2]
    PHYLAKTON H, ANDREWS G E. Gas explosions in linked vessels [J]. Journal of Loss Prevention in the Process Industries, 1993, 6(1): 15–19. DOI: 10.1016/0950-4230(93)80015-E.
    [3]
    LUNN G A, HOLBROW P, ANDRES S, et al. Dust explosions in totally enelosed interconnected vessel systems [J]. Journal of Loss Prevention in the Proeess Industries, 1995, 9(1): 45–58.
    [4]
    HOLBROW P, ANDRES S, LUNN G A. Dust explosions in interconnected vented vessels [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 91–103. DOI: 10.1016/0950-4230(95)00055-0.
    [5]
    HOLBROW P, LUNN G A. Dust explosion protection in linked vessels: guidance for containment and venting [J]. Journal of Loss Prevention in the Process Industries, 1999, 12: 227–234. DOI: 10.1016/S0950-4230(98)00050-3.
    [6]
    严建骏, 蒋军成, 王志荣, 等. 连通容器内预混气体爆炸过程的实验研究 [J]. 中国安全生产科学技术, 2009, 4(6): 10–14.

    YAN J J, JIANG J C, WANG Z R, et al. Experimental investigation into explosion of premixed gases in linked vessels [J]. Safety Production Science and Technology in China, 2009, 4(6): 10–14.
    [7]
    尤明伟, 蒋军成, 王志荣, 等. 连通容器中不同连通管径爆炸数值模拟分析 [J]. 工业安全与环保, 2010, 36(12): 25–26.

    YOU M W, JIANG J C, WANG Z R, et al. Numerical simulation of gas explosion in linked vessels with different pipe diameters [J]. Industrial Safety and Environmental Protection, 2010, 36(12): 25–26.
    [8]
    王志荣, 蒋军成, 郑杨艳. 连通容器内气体爆炸过程的数值分析 [J]. 化学工程, 2006, 34(10): 13–16. DOI: 10.3969/j.issn.1005-9954.2006.10.004.

    WANG Z R, JIANG J C, ZHENG Y Y. Numerical analysis of gas explosion process in linked vessels [J]. Chemical Engineering, 2006, 34(10): 13–16. DOI: 10.3969/j.issn.1005-9954.2006.10.004.
    [9]
    尤明伟, 喻源, 蒋军成, 等. 不同管长条件下连通容器预混气体的爆炸 [J]. 燃烧科学与技术, 2012, 18(3): 256–259.

    YOU M W, YU Y, JIANG J C, et al. Premixed flammable gas explosion in containers connected by pipes with different lengths [J]. Journal of Combustion Science and Technology, 2012, 18(3): 256–259.
    [10]
    王志荣, 周超, 师喜林, 等. 连通容器内预混气体泄爆过程 [J]. 化工学报, 2011, 62(1): 287–291.

    WANG Z R, ZHOU C, SHI X L, et al. Gas explosion venting of premixed gases in linked vessels [J]. CIESC Journal, 2011, 62(1): 287–291.
    [11]
    THOMAS G O, SUTTON P, EDWARDS D H. The behavior of detonation waves at concentration gradients [J]. Combustion Flame, 1991(84): 312–322.
    [12]
    KUZNETSOV M S, ALEKSEEV V I, DOROFEEV S B, et al, Detonation propagation, decay, and reinitiation in nonuniform gaseous mixtures [C]// Twenty-Seventh International Symposium on Combustion/The Combustion Institute, 1998:2241–2247.
    [13]
    VOLLMER, K G, ETTNER F, SATTELMAYER T. Influence of concentration gradients on flame acceleration in tubes [J]. Energetic Matter Science Technology, 2011, 72: 74–77.
    [14]
    VOLLMER K G, ETTNER F, SATTELMAYER T. Deflagration-to-detonation transition in hydrogen-air mixtures with a concentration gradient [J]. Combust Science & Technology, 2012, 184(10-11): 1903–1915. DOI: 10.1080/00102202.2012.690652.
    [15]
    KESSLER D A, GAMEZO V N, ORAN E S. Wave structures and irregular detonation cells in methane-air mixtures with concentration gradients[C]//49th AIAA Aerospace Science Meeting. Orlando,Florida, 2011.
    [16]
    ISHII K, KOJIMA M. Behavior of detonation propagation in mixtures with concentration gradients [J]. Shock Waves, 2007, 17(1): 95–102.
    [17]
    WANG C J, WEN J X. Numerical simulations of hydrogen-air detonation wave propagation in a non-uniform semi-confined flat layer [C]//The Sixteenth International Colloquium on Dust Explosions and the Eleventh Colloquium on Gas, Vapour, Liquid and Hybrid Explosions. Bergen, Norway, 2014.
    [18]
    HAN W H, WANG C, CHUNG K. Role of transversal concentration gradient in detonation propagation [J]. Journal of Fluid Mechanics, 2019, 865: 602–649. DOI: 10.1017/jfm.2019.37.
    [19]
    陈昊驰. 柱状空间内不同浓度甲烷爆炸传播特性的实验研究[D]. 石家庄: 华北科技学院, 2018: 38−44.
    [20]
    王信群, 王婷, 徐海顺, 等. BC粉体抑爆剂改性及抑制甲烷/空气混合物爆炸 [J]. 化工学报, 2015, 66(12): 5171–5178.

    WANG X Q, WANG T, XU H S, et al. Modification of commercial BC dry chemical powder suppressant and experiments on suppression of methane-air explosion [J]. CIESC Journal, 2015, 66(12): 5171–5178.
    [21]
    XIAO H H, HE X C, DUAN Q L, et al. An investigation of premixed flame propagation in a closed combustion duct with a 90° blend [J]. Applied Energy, 2014, 134: 248–256. DOI: 10.1016/j.apenergy.2014.07.071.
    [22]
    尤明伟. 连通容器气体爆炸及泄爆动力学过程研究[D]. 南京: 南京工业大学,2011.
    [23]
    王志荣. 受限空间气体爆炸传播及其动力学过程研究[D]. 南京: 南京工业大学, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(9)

    Article Metrics

    Article views (726) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return