Citation: | YANG Longlong, LIU Yan, YANG Chunli. Explosion characteristics of methane-air mixture near lower explosion limit at different relative humidities[J]. Explosion And Shock Waves, 2021, 41(2): 025401. doi: 10.11883/bzycj-2020-0093 |
[1] |
KUNDU S, ZANGANEH J, MOGHTADERI B. A review on understanding explosions from methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 507–523. DOI: 10.1016/j.jlp.2016.02.004.
|
[2] |
李润之, 黄子超, 司荣军. 环境温度对瓦斯爆炸压力及压力上升速率的影响 [J]. 爆炸与冲击, 2013, 33(4): 415–419. DOI: 10.11883/1001-1455(2013)04-0415-05.
LI R Z, HUANG Z C, SI R J. Influence of environmental temperature on gas explosion pressure and its rise rate [J]. Explosion and Shock Waves, 2013, 33(4): 415–419. DOI: 10.11883/1001-1455(2013)04-0415-05.
|
[3] |
罗振敏, 王涛, 文虎, 等. CO对CH4爆炸及自由基发射光谱特性的影响 [J]. 煤炭学报, 2019, 44(7): 2167–2177. DOI: 10.13225/j.cnki.jccs.2018.1123.
LUO Z M, WANG T, WEN H, et al. Explosion and flame emission spectra characteristics of CH4-air mixtures with CO addition [J]. Journal of China Coal Society, 2019, 44(7): 2167–2177. DOI: 10.13225/j.cnki.jccs.2018.1123.
|
[4] |
罗振敏, 王涛, 程方明, 等. 小尺寸管道内二氧化碳抑制甲烷爆炸效果的实验及数值模拟 [J]. 爆炸与冲击, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.
LUO Z M, WANG T, CHENG F M, et al. Experimental and numerical studies on the suppression of methane explosion using CO2 in a mini vessel [J]. Explosion and Shock Waves, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.
|
[5] |
钱海林, 王志荣, 蒋军成. N2/CO2混合气体对甲烷爆炸的影响 [J]. 爆炸与冲击, 2012, 32(4): 445–448. DOI: 10.11883/1001-1455(2012)04-0445-04.
QIAN H L, WANG Z R, JIANG J C. Influence of N2/CO2 mixture on methane explosion [J]. Explosion and Shock Waves, 2012, 32(4): 445–448. DOI: 10.11883/1001-1455(2012)04-0445-04.
|
[6] |
张迎新, 吴强, 刘传海, 等. 惰性气体N2/CO2抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.
ZHANG Y X, WU Q, LIU C H, et al. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2 [J]. Explosion and Shock Waves, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.
|
[7] |
ZHANG B, XIU G L, BAI C H. Explosion characteristics of argon/nitrogen diluted natural gas-air mixtures [J]. Fuel, 2014, 124: 125–132. DOI: 10.1016/j.fuel.2014.01.090.
|
[8] |
余明高, 刘梦茹, 温小萍, 等. 超细水雾-多孔材料协同抑制瓦斯爆炸实验研究 [J]. 煤炭学报, 2019, 44(5): 1562–1569. DOI: 10.13225/j.cnki.jccs.2018.0795.
YU M G, LIU M R, WEN X P, et al. Synergistic inhibition of gas explosion by ultrafine water mist-porous materials [J]. Journal of China Coal Society, 2019, 44(5): 1562–1569. DOI: 10.13225/j.cnki.jccs.2018.0795.
|
[9] |
裴蓓, 韦双明, 余明高, 等. 气液两相介质抑制管道甲烷爆炸协同增效作用 [J]. 煤炭学报, 2018, 43(11): 3130–3136. DOI: 10.13225/j.cnki.jccs.2018.0064.
PEI B, WEI S M, YU M G, et al. Synergistic inhibition effect on methane explosion in pipeline by gas-liquid two-phase medium [J]. Journal of China Coal Society, 2018, 43(11): 3130–3136. DOI: 10.13225/j.cnki.jccs.2018.0064.
|
[10] |
CASHDOLLAR K L, ZLOCHOWER I A, GREEN G M, et al. Flammability of methane, propane, and hydrogen gases [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3−5): 327–340. DOI: 10.1016/S0950-4230(99)00037-6.
|
[11] |
任常兴, 张欣, 张琰, 等. 可燃气体及混合物爆炸极限影响特征研究 [J]. 消防科学与技术, 2017, 36(11): 1500–1503. DOI: 10.3969/j.issn.1009-0029.2017.11.006.
REN C X, ZHANG X, ZHANG Y, et al. Overview on the characteristics of explosion limits of gases and gas mixtures [J]. Fire Science and Technology, 2017, 36(11): 1500–1503. DOI: 10.3969/j.issn.1009-0029.2017.11.006.
|
[12] |
谭迎新, 霍雨江, 焦国太, 等. 可燃气体动态爆炸极限测试装置设计 [J]. 消防科学与技术, 2018, 37(9): 1235–1238. DOI: 10.3969/j.issn.1009-0029.2018.09.024.
TAN Y X, HUO Y J, JIAO G T, et al. Design of combustible gas dynamic explosion limit test device [J]. Fire Science and Technology, 2018, 37(9): 1235–1238. DOI: 10.3969/j.issn.1009-0029.2018.09.024.
|
[13] |
刘丹, 司荣军, 李润之. 环境湿度对瓦斯爆炸特性的影响 [J]. 高压物理学报, 2015, 29(4): 307–312. DOI: 10.11858/gywlxb.2015.04.011.
LIU D, SI R J, LI R Z. Ambient humidity influence on explosion characteristics of methane-air mixture [J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 307–312. DOI: 10.11858/gywlxb.2015.04.011.
|
[14] |
谭汝媚, 张奇, 黄莹. 环境湿度对环氧丙烷蒸气爆炸参数的影响 [J]. 高压物理学报, 2013, 27(3): 325–330. DOI: 10.11858/gywlxb.2013.03.002.
TAN R M, ZHANG Q, HUANG Y. Ambient humidity influence on explosion characteristics parameters of gaseous epoxypropane [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 325–330. DOI: 10.11858/gywlxb.2013.03.002.
|
[15] |
朱丕凯. 环境因素对甲烷爆炸极限浓度的影响研究 [J]. 煤炭技术, 2019, 38(6): 108–111. DOI: 10.13301/j.cnki.ct.2019.06.038.
ZHU P K. Study on influence of ambient factors on methane explosive limit concentration [J]. Coal Technology, 2019, 38(6): 108–111. DOI: 10.13301/j.cnki.ct.2019.06.038.
|
[16] |
李成兵, 吴国栋, 经福谦. 水蒸气抑制甲烷燃烧和爆炸实验研究与数值计算 [J]. 中国安全科学学报, 2009, 19(1): 118–124. DOI: 10.3969/j.issn.1003-3033.2009.01.019.
LI C B, WU G D, JING F Q. Experimental investigation and numerical computation of methane combustion and explosion suppressed by vapor [J]. China Safety Science Journal, 2009, 19(1): 118–124. DOI: 10.3969/j.issn.1003-3033.2009.01.019.
|
[17] |
SHEN X B, ZHANG B, ZHANG X L, et al. Explosion behaviors of mixtures of methane and air with saturated water vapor [J]. Fuel, 2016, 177: 15–18. DOI: 10.1016/j.fuel.2016.02.095.
|
[18] |
QI S, DU Y, ZHANG P L, et al. Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion [J]. Journal of Hazardous Materials, 2017, 323: 593–601. DOI: 10.1016/j.jhazmat.2016.06.040.
|
[19] |
伯纳德•刘易斯, 京特•冯•埃尔贝. 燃气燃烧与瓦斯爆炸[M]. 王方, 译. 3版. 北京: 中国建筑工业出版社, 2007: 581−584.
|
[20] |
王华, 葛岭梅, 邓军, 等. 受限空间可燃性气体爆炸特性的对比 [J]. 煤炭学报, 2009, 34(2): 218–223. DOI: 10.13225/j.cnki.jccs.2009.02.003.
WANG H, GE L M, DENG J, et al. Comparaison of explosion characteristics of ignitable gases in confined space [J]. Journal of China Coal Society, 2009, 34(2): 218–223. DOI: 10.13225/j.cnki.jccs.2009.02.003.
|
[21] |
高娜, 张延松, 胡毅亭. 温度、压力对甲烷-空气混合物爆炸极限耦合影响的实验研究 [J]. 爆炸与冲击, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.
GAO N, ZHANG Y S, HU Y T. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures [J]. Explosion and Shock Waves, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.
|
[22] |
WANG T, LUO Z M, WEN H, et al. Effects of flammable gases on the explosion characteristics of CH4 in air [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 183–190. DOI: 10.1016/j.jlp.2017.06.018.
|
[23] |
KONDO S, TAKIZAWA K, TAKAHASHI A, et al. A study on flammability limits of fuel mixtures [J]. Journal of Hazardous Materials, 2008, 155(3): 440–448. DOI: 10.1016/j.jhazmat.2007.11.085.
|
[24] |
ZHANG B, NG H D. Explosion behavior of methane-dimethyl ether/air mixtures [J]. Fuel, 2015, 157: 56–63. DOI: 10.1016/j.fuel.2015.04.058.
|
[25] |
李润之. 点火能量与初始压力对瓦斯爆炸特性的影响研究[D]. 青岛: 山东科技大学, 2010: 50−67.
|
[26] |
GIERAS M, KLEMENS R, RARATA G, et al. Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm3 at normal and elevated temperature [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2-3): 263–270. DOI: 10.1016/j.jlp.2005.05.004.
|
[27] |
陆胤臣, 陶刚, 张礼敬. 球形容器内甲烷-空气爆炸特性分析与理论计算 [J]. 爆炸与冲击, 2017, 37(4): 773–778. DOI: 10.11883/1001-1455(2017)04-0773-06.
LU Y C, TAO G, ZHANG L J. Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel [J]. Explosion and Shock Waves, 2017, 37(4): 773–778. DOI: 10.11883/1001-1455(2017)04-0773-06.
|
[28] |
LEWIS B, VON ELBE G. Determination of the speed of flames and the temperature distribution in a spherical bomb from time-pressure explosion records [J]. The Journal of Chemical Physics, 1934, 2(5): 283–290. DOI: 10.1063/1.1749464.
|
[29] |
VAN DEN BULCK E. Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1): 35–42. DOI: 10.1016/j.jlp.2004.10.004.
|
[30] |
DAHOE A E. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(3): 152–166. DOI: 10.1016/j.jlp.2005.03.007.
|
[31] |
MIAO H Y, JI M, JIAO Q, et al. Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures [J]. International Journal of Hydrogen Energy, 2009, 34(7): 3145–3155. DOI: 10.1016/j.ijhydene.2009.01.059.
|
[32] |
LIAO S Y, JIANG D M, CHENG Q. Determination of laminar burning velocities for natural gas [J]. Fuel, 2004, 83(9): 1247–1250. DOI: 10.1016/j.fuel.2003.12.001.
|
[33] |
HAN G Z, HU Q X. Effects of electric field on saturated vapor pressure [J]. The Journal of Physical Chemistry C, 2020, 124(3): 1820–1826. DOI: 10.1021/acs.jpcc.9b09825.
|
[34] |
WANG S M, WU D J, GUO H, et al. Effects of concentration, temperature, ignition energy and relative humidity on the overpressure transients of fuel-air explosion in a medium-scale fuel tank [J]. Fuel, 2020, 259: 116265. DOI: 10.1016/j.fuel.2019.116265.
|
[35] |
LIANG Y T, ZENG W. Numerical study of the effect of water addition on gas explosion [J]. Journal of Hazardous Materials, 2009, 174(1−3): 386–392. DOI: 10.1016/j.jhazmat.2009.09.064.
|
[36] |
ZHANG P L, DU Y, WU S L, et al. Experiments of the secondary ignition of gasoline-air mixture in a confined tunnel [J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(3): 1773–1780. DOI: 10.1007/s10973-014-4082-y.
|