Citation: | HUANG Kuibang, LIU Yiru, HONG Tao, YU Xin, PENG Wenyang, SHU Junxiang. Numerical simulation of pre-shock desensitization in TATB-based heterogeneous explosive[J]. Explosion And Shock Waves, 2021, 41(3): 032301. doi: 10.11883/bzycj-2020-0100 |
[1] |
CAMPBELL A W, DAVIS W C, RAMSAY J B, et al. Shock initiation of solid explosives [J]. Physics of Fluids, 1961, 4(4): 511. DOI: 10.1063/1.1706354.
|
[2] |
CAMPBELL A W, TRAVIS J R. The shock desensitization of PBX-9404 and composition B-3 [C] // Proceedings of the 8th International Detonation Symposium. Albuquerque: Naval Surface Weapons Center, 1985: 1057−1068.
|
[3] |
MULFORD R N, SHEFFIELD S A, ALCON R R. Preshock desensitization of PBX explosives [J]. AIP Conference Proceedings, 1994, 309(1): 1405–1408. DOI: 10.1063/1.46243.
|
[4] |
TARVER C M, COOK T M, URTIEW P A, et al. Multiple shock initiation of LX-17 [C] // Proceedings of the 10th International Detonation Symposium. Boston: Office of Naval Research, 1993: 676−703.
|
[5] |
BAT’KOV Y V, GLUSHAK B L, NOVIKOV S A. Desensitization of pressed explosive compositions based on TNT, RDX, and HMX under double shock-wave loading [J]. Combustion, Explosion and Shock Waves, 1995, 31(4): 482–485. DOI: 10.1007/BF00789372.
|
[6] |
GUSTAVSEN R L, SHEFFIELD S A, ALCON R R, et al. Double shock initiation of the HMX based explosive EDC-37 [J]. AIP Conference Proceedings, 2002, 620(1): 999–1002. DOI: 10.1063/1.1483706.
|
[7] |
MADER C L. Numerical modeling of explosives and propellants [M]. 3rd ed. Boca Raton: CRC Press, 2008.
|
[8] |
HUSSAIN T, LIU Y, HUANG F L, et al. Modeling and simulation of preshock desensitization in heterogeneous explosives using a mesoscopic reaction rate model [J]. Simulation, 2015, 91(11): 980–988. DOI: 10.1177/0037549715608962.
|
[9] |
BORDZILOVSKII S A, KARAKHANOV S M. Desensitization of pressed RDX/paraffin and HMX/paraffin compounds by multiple shock waves [J]. Combustion, Explosion and Shock Waves, 1995, 31(2): 227–235. DOI: 10.1007/BF00755754.
|
[10] |
LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. The Physics of Fluids, 1980, 23(12): 2362–2372. DOI: 10.1063/1.862940.
|
[11] |
JOHNSON J N, TANG P K, FOREST C A. Shock-wave initiation of heterogeneous reactive solids [J]. Journal of Applied Physics, 1985, 57(9): 4323–4334. DOI: 10.1063/1.334591.
|
[12] |
WESCOTT B L, STEWART D S, DAVIS W C. Equation of state and reaction rate for condensed-phase explosives [J]. Journal of Applied Physics, 2005, 98(5): 053514. DOI: 10.1063/1.2035310.
|
[13] |
DEOLIVEIRA G, KAPILA A K, SCHWENDEMAN D W, et al. Detonation diffraction, dead zones and the ignition and growth model [C] // Proceedings of the 13th International Detonation Symposium. Norfolk: Office of Naval Research, 2006.
|
[14] |
HUSSAIN T, LIU Y, HUANG F L, et al. Desensitization by pre-shocking in heterogeneous explosives and its numerical modelling [J]. Central European Journal of Energetic Materials, 2016, 13(2): 357–379. DOI: 10.22211/cejem/64990.
|
[15] |
郝鹏程, 冯其京, 洪滔, 等. 钝感炸药点火增长模型的欧拉数值模拟 [J]. 爆炸与冲击, 2012, 32(3): 243–250. DOI: 10.11883/1001-1455(2012)03-0243-08.
HAO P C, FENG Q J, HONG T, et al. Eulerian simulation on insensitive explosives with the ignition-growth reactive model [J]. Explosion and Shock Waves, 2012, 32(3): 243–250. DOI: 10.11883/1001-1455(2012)03-0243-08.
|
[16] |
STARKENBERG J. Shock-pressure and pseudo-entropic approaches to explosive initiation modeling [C] // Proceedings of the 15th International Detonation Symposium. San Francisco, 2014: 908−916.
|
[17] |
STARKENBERG J. Modeling detonation propagation and failure using explosive initiation models in a conventional hydrocode [C] // Proceedings of the 12th International Detonation Symposium. Annapolis: Office of Naval Research, 2002.
|
[18] |
HANDELEY C A. CREST reactive flow model [C] // Proceedings of the 13th International Detonation Symposium. Norfolk, 2006.
|
[19] |
DESBIENS N, MATIGNON C, SORIN R. Temperature-based model for condensed-phase explosive detonation [J]. Journal of Physics: Conference Series, 2014, 500(15): 152004. DOI: 10.1088/1742-6596/500/15/152004.
|
[20] |
ASLAM T D. Shock temperature dependent rate law for plastic bonded explosives [J]. Journal of Applied Physics, 2018, 123(14): 145901. DOI: 10.1063/1.5020172.
|
[21] |
裴红波, 刘俊明, 张旭, 等. 基于反向撞击法的JB-9014炸药Hugoniot关系测量 [J]. 爆炸与冲击, 2019, 39(5): 052301. DOI: 10.11883/bzycj-2017-0395.
PEI H B, LIU J M, ZHANG X, et al. Measurement of Hugoniot relation for unreacted JB-9014 explosive with reverse-impact method [J]. Explosion and Shock Waves, 2019, 39(5): 052301. DOI: 10.11883/bzycj-2017-0395.
|
[22] |
刘俊明, 张旭, 裴红波, 等. JB-9014钝感炸药冲击Hugoniot关系测量 [J]. 高压物理学报, 2018, 32(3): 033202. DOI: 10.11858/gywlxb.20170669.
LIU J M, ZHANG X, PEI H B, et al. Measurement of Hugoniot relation for JB-9014 insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 033202. DOI: 10.11858/gywlxb.20170669.
|
[23] |
张旭, 池家春, 冯民贤. JB9014钝感炸药冲击绝热线测量 [J]. 高压物理学报, 2001, 15(4): 304–308. DOI: 10.11858/gywlxb.2001.04.011.
ZHANG X, CHI J C, FENG M X. Hugoniot relation of JB9014 insensitive high explosive [J]. Chinese Journal of High Pressure Physics, 2001, 15(4): 304–308. DOI: 10.11858/gywlxb.2001.04.011.
|
[24] |
刘俊明. JB-9014炸药未反应状态方程研究[D]. 四川绵阳: 中国工程物理研究院, 2018.
|
[25] |
徐辉, 孙占峰. 钝感高能炸药JB-9014做功能力的实验研究 [J]. 高压物理学报, 2013, 27(4): 582–586. DOI: 10.11858/gywlxb.2013.04.018.
XU H, SUN Z F. An experimental study on the capacity for work of insensitive high explosive [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 582–586. DOI: 10.11858/gywlxb.2013.04.018.
|
[26] |
曾代朋, 陈军, 谭多望. 超压爆轰产物冲击绝热线的实验研究 [J]. 高压物理学报, 2010, 24(1): 76–80. DOI: 10.11858/gywlxb.2010.01.014.
ZENG D P, CHEN J, TAN D W. Experiment research on the Hugoniot of JB-9014 explosive over-driven detonation product [J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 76–80. DOI: 10.11858/gywlxb.2010.01.014.
|
[27] |
TANG P K, ANDERSON W W, FRITZ J N, et al. A study of the overdriven behaviors of PBX 9501 and PBX 9502 [C] // Proceedings of the 11th International Detonation Symposium. Snowmass, CO, 1998.
|
[28] |
张琪敏, 张旭, 赵康, 等. TATB基钝感炸药JB-9014的冲击起爆反应增长规律 [J]. 爆炸与冲击, 2019, 39(4): 041405. DOI: 10.11883/bzycj-2018-0050.
ZHANG Q M, ZHANG X, ZHAO K, et al. Law of reaction growth of shock initiation on the TATB based insensitive explosive JB-9014 [J]. Explosion and Shock Waves, 2019, 39(4): 041405. DOI: 10.11883/bzycj-2018-0050.
|
[29] |
黄文斌, 文尚刚, 谭多望, 等. 在球面散心冲击波作用下JB-9014炸药冲击引爆过程实验研究 [J]. 爆炸与冲击, 2006, 26(4): 373–376. DOI: 10.11883/1001-1455(2006)04-0373-04.
HUANG W B, WEN S G, TAN D W, et al. Experimental study on shock initiation process of JB-9014 under loading conditions of divergent spherical shock wave [J]. Explosion and Shock Waves, 2006, 26(4): 373–376. DOI: 10.11883/1001-1455(2006)04-0373-04.
|
[30] |
訾攀登, 陈军, 张蓉, 等. 二次压缩条件下JOB-9003炸药特性研究 [J]. 高压物理学报, 2017, 31(2): 155–161. DOI: 10.11858/gywlxb.2017.02.007.
ZI P D, CHEN J, ZHANG R, et al. Characteristics of JOB-9003 in double shocks experiments [J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 155–161. DOI: 10.11858/gywlxb.2017.02.007.
|
[31] |
FERM E N, MORRIS C L, QUINTANA J P, et al. Proton radiography examination of unburned regions in PBX 9502 corner turning experiments [J]. AIP Conference Proceedings, 2002, 620(1): 966–969. DOI: 10.1063/1.1483699.
|
[32] |
SOUERS P C, ANDRESKI H G, COOK Ⅲ C F, et al. LX-17 corner-turning [J]. Propellants, Explosives, Pyrotechnics, 2004, 29(6): 359–367. DOI: 10.1002/prep.200400067.
|
[33] |
WHITWORTH N J. CREST modelling of PBX 9502 corner turning experiments at different initial temperatures [J]. Journal of Physics: Conference Series, 2014, 500(5): 052050. DOI: 10.1088/1742-6596/500/5/052050.
|