Volume 41 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
CUI Shitang. Propagation of combined wave with phase transformation in pseudo-elastic TiNi alloy thin-walled tubes[J]. Explosion And Shock Waves, 2021, 41(1): 013201. doi: 10.11883/bzycj-2020-0108
Citation: CUI Shitang. Propagation of combined wave with phase transformation in pseudo-elastic TiNi alloy thin-walled tubes[J]. Explosion And Shock Waves, 2021, 41(1): 013201. doi: 10.11883/bzycj-2020-0108

Propagation of combined wave with phase transformation in pseudo-elastic TiNi alloy thin-walled tubes

doi: 10.11883/bzycj-2020-0108
  • Received Date: 2020-04-06
  • Rev Recd Date: 2020-06-23
  • Publish Date: 2021-01-05
  • Phase transformation can seriously modify the properties of the materials and therefore impact the stress wave propagation features inside the materials. A simplified incremental phase transformation constitutive model, considering both the hydrostatic pressure and the deviatoric stress, is used to study the propagation of phase transformation coupled waves in a semi-infinite thin-walled tubes under the combined tension (compression) and torsion impact loading. The generalized characteristic theory is used to analyze the basic properties of the characteristic wave velocity and simple wave solution. Two kinds of typical solutions are studied by using numerical method. The stress paths and wave structure are related to the initial state and the loading amplitude, exhibiting the different properties from conventional elastoplastic materials.
  • loading
  • [1]
    唐志平. 冲击相变[M]. 北京: 科学出版社, 2008.
    [2]
    SELLITTO A, RICCIO A. Overview and future advanced engineering applications for morphing surfaces by shape memory alloy materials [J]. Materials, 2019, 12(5): 708. DOI: 10.3390/ma12050708.
    [3]
    CHEN Y, LAGOUDAS D C. Impact induced phase transformation in shape memory alloys [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(2): 275–300. DOI: 10.1016/s0022-5096(99)00044-7.
    [4]
    BEKKER A, JIMENEZ-VICTORY J C, POPOV P, et al. Impact induced propagation of phase transformation in a shape memory alloy rod [J]. International Journal of Plasticity, 2002, 18(11): 1447–1479. DOI: 10.1016/s0749-6419(02)00025-6.
    [5]
    王文强, 唐志平. 冲击下宏观相边界的传播 [J]. 爆炸与冲击, 2000, 20(1): 25–31.

    WANG W Q, TANG Z P. Propagation of macroscopic phase boundary under shock loading [J]. Explosion and Shock Waves, 2000, 20(1): 25–31.
    [6]
    BOUVET C, CALLOCH S, LEXCELLENT C. Experimental investigations under biaxial loadings on Cu-Al-Be shape memory alloy[M]. Amsterdam: Elsevier Science, 2000:793-798.
    [7]
    DAI X, TANG Z P, XU S L, et al. Propagation of macroscopic phase boundaries under impact loading [J]. International Journal of Impact Engineering, 2004, 30(4): 385–401. DOI: 10.1016/s0734-743x(03)00090-3.
    [8]
    刘永贵, 沈玲燕. 固定温度界面对相变波传播规律的影响 [J]. 高压物理学报, 2018, 32(4): 33–39. DOI: 10.11858/gywlxb.20170559.

    LIU Y G, SHEN L Y. Effect of the fixed temperature interface on the propagation of the phase transition wave [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 33–39. DOI: 10.11858/gywlxb.20170559.
    [9]
    徐薇薇, 唐志平, 张兴华. 有限杆中不可逆相边界的传播规律及其应用 [J]. 高压物理学报, 2006(4): 365–371. DOI: 10.3969/j.issn.1000-5773.2006.04.005.

    XU W W, TANG Z P, ZHANG X H. Propagation of irreversible macroscopic phase boundaries along a finite rod under dynamic loading [J]. Chinese Journal of High Pressure Physics, 2006(4): 365–371. DOI: 10.3969/j.issn.1000-5773.2006.04.005.
    [10]
    ZHU P P, DAI H H. Wave Propagation in a shape memory alloy bar under an impulsive loading [J]. Journal of Applied Mechanics, 2016, 83(10): 104502. DOI: 10.1115/1.4034115.
    [11]
    LIU Y G, SHAN L Y, SHAN J F, et al. Experimental study on temperature evolution and strain rate effect on phase transformation of TiNi shape memory alloy under shock loading [J]. International Journal of Mechanical Sciences, 2019, 156(6): 342–354. DOI: 10.1016/j.ijmecsci.2019.04.005.
    [12]
    SITTNER P, HARA Y, TOKUDA M. Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces [J]. Metallurgical and Materials Transactions A, 1995, 26(11): 2923–2935. DOI: 10.1007/bf02669649.
    [13]
    SUN Q P, LI Z Q. Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion–from localization to homogeneous deformation [J]. International Journal of Solids and Structures, 2002, 39(13): 3797–3809. DOI: 10.1016/S0020-7683(02)00182-8.
    [14]
    FANG D N, LU W, YAN W Y, et al. Stress–strain relation of CuAlNi SMA single crystal under biaxial loading: constitutive model and experiments [J]. Acta Materialia, 1998, 47(1): 269–280. DOI: 10.1016/s1359-6454(98)00303-6.
    [15]
    GRABE C, BRUHNS O T. Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes [J]. International Journal of Plasticity, 2009, 25(3): 513–545. DOI: 10.1016/j.ijplas.2008.03.002.
    [16]
    CISSE C, ZAKI W, ZINEB T B. A review of modeling techniques for advanced effects in shape memory alloy behavior [J]. Smart Materials and Structures, 2016, 25(10). DOI: 10.1088/0964-1726/25/10/103001.
    [17]
    CHATZIATHANASIOU D, CHEMISKY Y, HATZIGEORGIOU G, et al. Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading [J]. International Journal of Plasticity, 2016, 82: 192–224. DOI: 10.1016/j.ijplas.2016.03.005.
    [18]
    MEHRABI R, ANDANI M T, KADKHODAEI M, et al. Experimental study of NiTi thin-walled tubes under uniaxial tension, torsion, proportional and non-proportional loadings [J]. Experimental Mechanics, 2015, 55(6): 1151–1164. DOI: 10.1007/s11340-015-0016-2.
    [19]
    WANG X M, ZHOU Q T, LIU H, et al. Experimental study of the biaxial cyclic behavior of thin-wall tubes of NiTi shape memory alloys [J]. Metallurgical and Materials Transactions A, 2012, 43(11): 4123–4128. DOI: 10.1007/s11661-012-1225-2.
    [20]
    FARAJPOUR M R, SHAHIDI A R, FARAJPOUR A. A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires [J]. Materials Research Express, 2018, 5(3): 035026. DOI: 10.1088/2053-1591/aab3a9.
    [21]
    SONG Q Z, TANG Z. Combined stress waves with phase transition in thin-walled tubes [J]. Applied Mathematics and Mechanics, 2014, 35(3): 285–296. DOI: 10.1007/s10483-014-1791-7.
    [22]
    WANG B, TANG Z P. Study on the propagation of coupling shock waves with phase transition under combined tension-torsion impact loading [J]. Science China (Physics, Mechanics & Astronomy), 2014, 57(10): 1977–1986. DOI: 10.1007/s11433-014-5468-3.
    [23]
    郭扬波, 唐志平, 徐松林. 一种考虑静水压力和偏应力共同作用的相变临界准则 [J]. 固体力学学报, 2004(4): 417–422. DOI: 10.3969/j.issn.0254-7805.2004.04.009.

    GUO Y B, TANG Z P, XU S L. A critical criterion for phase transformation considering both hydrostatic pressure and edviatoric stress effects [J]. Aata Mechanica Solida Sinica, 2004(4): 417–422. DOI: 10.3969/j.issn.0254-7805.2004.04.009.
    [24]
    LIPKIN J, CLIFTON R J. An experimental study of combined longitudinal and torsional plastic waves in a thin-walled tube [M]. Berlin Heidelberg: Springer, 1969. DOI: 10.1007/978-3-642-85640-2_22.
    [25]
    LIPKIN J, CLIFTON R J. Plastic waves of combined stresses due to longitudinal impact of a pretorqued tube: Part 2: comparison of theory with experiment [J]. Journal of Applied Mechanics, 1970, 37(4): 1113. DOI: 10.1115/1.3408667.
    [26]
    LIPKIN J, CLIFTON R J. Plastic waves of combined stresses due to longitudinal impact of a pretorqued tube: Part 1: experimental results [J]. Journal of Applied Mechanics, 1970, 37(4): 1113. DOI: 10.1115/1.3408666.
    [27]
    王波, 张科, 唐志平. 薄壁管拉扭复合相变波的实验研究 [J]. 振动与冲击, 2017(22): 35–39. DOI: 10.13465/j.cnki.jvs.2017.22.005.

    WANG B, ZHANG K, TANG Z P. An experimental study on the stress waves with phase transition under combined tension-torsion loading [J]. Journal of Vibration and Shock, 2017(22): 35–39. DOI: 10.13465/j.cnki.jvs.2017.22.005.
    [28]
    TING T C, LI Y. Eulerian formulation of transport equations for three-dimensional shock waves in simple elastic solids [J]. Journal of Elasticity, 1983, 13(3): 295–310. DOI: 10.1007/bf00042998.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (447) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return