Hou Hai-liang, Zhang Cheng-liang, Li Mao, Hu Nian-ming, Zhu Xi. Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments[J]. Explosion And Shock Waves, 2015, 35(1): 116-123. doi: 10.11883/1001-1455(2015)01-0116-08
Citation: HE Ming, ZHANG Aman, LIU Yunlong. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes[J]. Explosion And Shock Waves, 2020, 40(11): 111402. doi: 10.11883/bzycj-2020-0110

Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes

doi: 10.11883/bzycj-2020-0110
  • Received Date: 2020-04-08
  • Rev Recd Date: 2020-05-22
  • Publish Date: 2020-11-05
  • To address the problem of double-structures subjected to underwater explosion, the interaction mechanism between explosion bubbles and double-layer structures with circular hole was studied. And the characteristics such as cabin inrush and flow field change were analyzed by an Eulerian finite element numerical model. First of all, the numerical model was verified through discharge experiments, and it turned out that the numerical results agreed well with the experimental results. Then, the interaction behaviors under different initial conditions were summarized. Under the combined action of internal air, fluid inertia and breach induction, the bubble’s segmentation occurs during the bubble evolution process. When the size coefficient of the inner-layer breach is less than 0.5, the secondary water hump phenomenon occurs in the inner-cabin and the shape of the inrush is slender. When the explosive detonation position coefficient is less than 0.1, the re-closing and breaking of the free surface will take place. The influence of the free surface in the shell on the cabin inrush is complicated and when the water level is full, the rapid surge will reduce the emergency time of the ship.
  • [1]
    张阿漫, 王诗平, 彭玉祥, 等. 水下爆炸与舰船毁伤研究进展 [J]. 中国舰船研究, 2019, 14(3): 1–13. DOI: 10.19693/j.issn.1673-3185.01608.

    ZHANG A M, WANG S P, PENG Y X, et al. Research progress in underwater explosion and its damage to ship structures [J]. Chinese Journal of Ship Research, 2019, 14(3): 1–13. DOI: 10.19693/j.issn.1673-3185.01608.
    [2]
    金键, 朱锡, 侯海量, 等. 水下爆炸载荷下舰船响应与毁伤研究综述 [J]. 水下无人系统学报, 2017, 25(6): 396–409. DOI: 10.11993/j.issn.2096-3920.2017.05.002.

    JIN J, ZHU X, HOU H L, et al. Review of dynamic response and damage mechanism of ship structure subjected to underwater explosion load [J]. Journal of Unmanned Undersea Systems, 2017, 25(6): 396–409. DOI: 10.11993/j.issn.2096-3920.2017.05.002.
    [3]
    KLASEBOER E, KHOO B C, HUNG K C. Dynamics of an oscillating bubble near a floating structure [J]. Journal of Fluids and Structures, 2005, 21(4): 395–412. DOI: 10.1016/j.jfluidstructs.2005.08.006.
    [4]
    WANG S P, ZHANG A M, LIU Y L et al. Bubble dynamics and its applications [J]. Journal of Hydrodynamics, 2018, 30(6): 975–91. DOI: 10.1007/s42241-018-0141-3.
    [5]
    张洪, 吴红波, 夏曼曼, 等. 水下爆炸边界效应的研究进展 [J]. 煤矿爆破, 2018(5): 1–5.

    ZHANG H, WU H B, XIA M M, et al. Research progress of the boundary effect on underwater blasting [J]. Coal Mine Blasting, 2018(5): 1–5.
    [6]
    张弩, 宗智. 水下爆炸气泡载荷作用下船体梁的动态水弹性响应 [J]. 船舶力学, 2015, 19(5): 582–591. DOI: 10.3969/j.issn.1007-7294.2015.05.013.

    ZHANG N, ZONG Z. Dynamic hydro-elastic response of a ship hull girder subjected to underwater explosion bubbles [J]. Journal of Ship Mechanics, 2015, 19(5): 582–591. DOI: 10.3969/j.issn.1007-7294.2015.05.013.
    [7]
    GAO J G, CHEN Z H, HUANG Z G et al. Numerical investigations on the oblique water entry of high-speed projectiles [J]. Applied Mathematics and Computation, 2019, 362: 124547. DOI: 10.1016/j.amc.2019.06.061.
    [8]
    张振华, 牟金磊, 陈崧, 等. 大型水面舰艇在重型鱼雷水下近距爆炸作用下的毁伤效应 [J]. 海军工程大学学报, 2013, 25(1): 48–53. DOI: 10.7495/j.issn.1009-3486.2013.01.006.

    ZHANG Z H, MU J L, CHEN S, et al. Anomalous dynamic response of ship beam to near-field underwater explosion of heavy torpedo [J]. Journal of Naval University of Engineering, 2013, 25(1): 48–53. DOI: 10.7495/j.issn.1009-3486.2013.01.006.
    [9]
    殷彩玉, 金泽宇, 谌勇, 等. 多孔覆盖层水下爆炸流固耦合分析 [J]. 振动与冲击, 2017, 36(12): 7–11; 49. DOI: 10.13465/j.cnki.jvs.2017.12.002.

    YIN C Y, JIN Z Y, CHEN Y, et al. Fluid-structure interaction effects of cellular claddings to underwater explosion [J]. Journal of Vibration and Shock, 2017, 36(12): 7–11; 49. DOI: 10.13465/j.cnki.jvs.2017.12.002.
    [10]
    张伦平, 潘建强, 刘建湖, 等. 多层结构水下爆炸破坏效应研究 [C] // 第十届全国冲击动力学讨论会论文集. 太原: 中国力学学会, 2011: 1−13.
    [11]
    ZHANG A M, CUI P, CUI J, et al. Experimental study on bubble dynamics subject to buoyancy [J]. Journal of Fluid Mechanics, 2015, 776: 137–60. DOI: 10.1017/jfm.2015.323.
    [12]
    LIU Y L, WANG S P, ZHANG A M. Interaction between bubble and air-backed plate with circular hole [J]. Physics of Fluids, 2016, 28(6): 062105. DOI: 10.1063/1.4953010.
    [13]
    LIU N N, WU W B, ZhANG A M et al. Experimental and numerical investigation on bubble dynamics near a free surface and a circular opening of plate [J]. Physics of Fluids, 2017, 29(10): 107102. DOI: 10.1063/1.4999406.
    [14]
    刘润泉, 白雪飞, 朱锡. 舰船单元结构模型水下接触爆炸破口试验研究 [J]. 海军工程大学学报, 2001, 13(5): 41–46. DOI: 10.3969/j.issn.1009-3486.2001.05.011.

    LIU R Q, BAI X F, ZHU X, et al. Breach experiment research of vessel element structure models subjected to underwater contact explosion [J]. Journal of Naval University of Engineering, 2001, 13(5): 41–46. DOI: 10.3969/j.issn.1009-3486.2001.05.011.
    [15]
    李金河, 汪斌, 王彦平, 等. 不同装药形状TNT水中爆炸近场冲击波传播的实验研究 [J]. 火炸药学报, 2018, 41(5): 461–464; 500. DOI: 10.14077/j.issn.1007-7812.2018.05.007.

    LI J H, WANG B, WANG Y P, et al. Experimental study on near-field shock wave propagation of underwater explosion of TNT with different charge shapes [J]. Chinese Journal of Explosives & Propellants, 2018, 41(5): 461–464; 500. DOI: 10.14077/j.issn.1007-7812.2018.05.007.
    [16]
    杨棣, 姚熊亮, 王军, 等. 接触爆炸载荷作用下船体板架破口大小的预测 [J]. 中国造船, 2014, 55(2): 77–84. DOI: 10.3969/j.issn.1000-4882.2014.02.009.

    YANG D, YAO X L, WANG J, et al. Forecast of crevasse size of hull grillage in contact explosion [J]. Shipbuilding of China, 2014, 55(2): 77–84. DOI: 10.3969/j.issn.1000-4882.2014.02.009.
    [17]
    LI S, Li Y B, ZHANG A M. Numerical analysis of the bubble jet impact on a rigid wall [J]. Applied Ocean Research, 2015, 50: 227–236. DOI: 10.1016/j.apor.2015.02.003.
    [18]
    汪浩, 程远胜, 刘均, 等. 新型矩形蜂窝夹芯夹层加筋圆柱壳抗水下爆炸冲击载荷分析 [J]. 振动与冲击, 2011, 30(1): 162–166; 226. DOI: 10.3969/j.issn.1000-3835.2011.01.036.

    WANG H, CHENG Y S, LIU J, et al. Anti-shock analysis for new type rectangular honeycomb sandwich stiffened cylindrical shells subjected to underwater explosion shock load [J]. Journal of Vibration and Shock, 2011, 30(1): 162–166; 226. DOI: 10.3969/j.issn.1000-3835.2011.01.036.
    [19]
    ZHANG A M, LIU Y L. Improved three-dimensional bubble dynamics model based on boundary element method [J]. Journal of Computational Physics, 2015, 294: 208–223. DOI: 10.1016/j.jcp.2015.03.049.
    [20]
    LI T, WANG S P, LI S, et al. Numerical investigation of an underwater explosion bubble based on FVM and VOF [J]. Applied Ocean Research, 2018, 74: 49–58. DOI: 10.1016/j.apor.2018.02.024.
    [21]
    王志凯, 周鹏, 孙波, 等. 气泡及其破碎兴波对浮动冲击平台影响探究 [J]. 爆炸与冲击, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.

    WANG Z K, ZHOU P, SUN B, et al. Influence of bubbles and breaking waves on floating shock platform [J]. Explosion and Shock Waves, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.
    [22]
    BENSON D J. Computational methods in lagrangian and eulerian hydrocodes [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2−3): 235–394. DOI: 10.1016/0045-7825(92)90042-I.
    [23]
    LIU Y L, ZHANG A M, TIAN Z L, et al. Investigation of free-field underwater explosion with Eulerian finite element method [J]. Ocean Engineering, 2018, 166: 182–190. DOI: 10.1016/j.oceaneng.2018.08.001.
    [24]
    HE M, ZHANG A M, LIU Y L. Prolonged simulation of near-free surface underwater explosion based on Eulerian finite element method [J]. Theoretical and Applied Mechanics Letters, 2020, 10(1): 16–22. DOI: 10.1016/j.taml.2020.01.003.
    [25]
    TIAN Z L, LIU Y L, ZHANG A M, et al. Energy dissipation of pulsating bubbles in compressible fluids using the Eulerian finite-element method [J]. Ocean Engineering, 2020, 196: 106714. DOI: 10.1016/j.oceaneng.2019.106714.
    [26]
    QIU J X, LIU T G, KHOO B C. Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with ghost fluid method [J]. Communications in Computational Physics, 2008, 3(2): 479–504.
    [27]
    FELIPPA C A. A family of early-time approximations for fluid-structure interaction [J]. Journal of Applied Mechanics, 1980, 47(4): 703–708. DOI: 10.1115/1.3153777.
  • Cited by

    Periodical cited type(50)

    1. 罗家元,陈哲伦,李世岳,高聪. 典型防护材料空爆载荷作用下动态响应及抗冲击设计研究现状. 复合材料科学与工程. 2024(10): 150-160 .
    2. 沈超,张磊,周章涛,刘建湖. 水下近距和接触爆炸载荷作用下板架结构动态响应机理. 兵工学报. 2023(04): 1050-1061 .
    3. 李述涛,魏万里,陈叶青,陈龙明. 基于体积填充法的弹体侵爆一体毁伤效应研究. 振动与冲击. 2023(12): 194-204 .
    4. 刘彦,王百川,闫俊伯,闫子辰,时振清,黄风雷. 侵彻作用下负泊松比蜂窝夹芯结构动态响应. 兵工学报. 2023(07): 1938-1953 .
    5. 张之凡,李海龙,张桂勇,宗智,姜宜辰. 聚能装药水下爆炸冲击波和侵彻体载荷作用时序研究. 爆炸与冲击. 2023(10): 3-14 . 本站查看
    6. 韩佳彤,王昕,张磊,李振,王鹏飞,赵振宇,卢天健. 泡沫子弹冲击下预制圆孔Q235钢板的动态响应与破坏机理. 兵工学报. 2023(12): 3654-3666 .
    7. 赵伟成,翟红波,毛伯永. 协同爆炸时冲击波毁伤效应研究综述. 兵器装备工程学报. 2023(12): 123-132 .
    8. 王璐,王志军,马武伟,贾子健. 钢/陶瓷/PE/钢结构抗破片侵彻研究. 兵器材料科学与工程. 2022(01): 103-108 .
    9. 郑羽,李茂,李永清,侯海量,刘雨佳. UHMWPE夹芯式复合装甲抗大质量柱形弹侵彻性能试验研究. 船舶力学. 2022(03): 426-436 .
    10. 赵中南,韩宾,李朗,张钱城,卢天健. 蜂窝点阵-陶瓷复合装甲在联合载荷下的动态力学行为. 振动与冲击. 2022(09): 227-236 .
    11. 赵著杰,侯海量,李典. 填充多胞元抗冲击防护结构动力学特性及防护性能研究进展. 中国舰船研究. 2021(03): 96-111 .
    12. Wei Li,Peng Wang,Gao-peng Feng,Yong-gang Lu,Jun-zheng Yue,Hui-min Li. The deformation and failure mechanism of cylindrical shell and square plate with pre-formed holes under blast loading. Defence Technology. 2021(04): 1143-1159 .
    13. 程远胜,谢杰克,李哲,刘均,张攀. 冲击波和破片群联合作用下高强聚乙烯/泡沫铝夹芯复合结构毁伤响应特性. 兵工学报. 2021(08): 1753-1762 .
    14. 任宪奔,江鹏,李营,方岱宁. 舰船结构舱内爆炸毁伤与防护研究进展. 中国科学:物理学 力学 天文学. 2021(12): 7-26 .
    15. 夏冰寒,王金相,周楠,陈兴旺,卢孚嘉. 柱状装药预制破片缩比战斗部爆炸冲击波和破片的作用时序. 高压物理学报. 2020(01): 95-101 .
    16. 杨帅,赵太勇,张晓东,成乐乐,李帅,孟凡高,江帅. 杀爆战斗部相关作用场的毁伤效能研究. 爆破器材. 2020(02): 40-45 .
    17. 邱晓清,唐柏鉴,任鹏,张晓锋. 冲击波和破片对超高分子量聚乙烯板联合作用的仿真模拟. 江苏科技大学学报(自然科学版). 2020(03): 6-13 .
    18. 李茂,高圣智,侯海量,李典,李永清,朱锡. 空爆冲击波与破片群联合作用下聚脲涂覆陶瓷复合装甲结构毁伤特性. 爆炸与冲击. 2020(11): 51-63 . 本站查看
    19. 李典,侯海量,朱锡,陈长海,李茂. 战斗部近距爆炸下夹芯复合舱壁结构防护能力的理论评估模型. 爆炸与冲击. 2019(02): 13-21 . 本站查看
    20. 田力,胡建伟. Ⅰ-Ⅴ型夹芯板在近爆冲击波和破片群联合作用下防爆性能研究. 湖南大学学报(自然科学版). 2019(01): 32-46 .
    21. 田力,张浩. 冲击波和预制破片联合作用下H型钢柱抗爆设计. 中南大学学报(自然科学版). 2019(01): 146-157 .
    22. 吴震,金湖庭,杜志鹏,李营. 破片与冲击波对舰船板架的耦合毁伤效应试验研究. 船舶力学. 2019(02): 211-217 .
    23. 肖肯,李德聪,戴文喜,张弩,吴国民,贺双元. 基于TRIZ理论的舰船防护舱壁结构型式生成研究. 中国舰船研究. 2019(02): 36-44 .
    24. 郑红伟,陈长海,侯海量,朱锡,黄晓明,李茂. 爆炸冲击波和高速破片载荷的复合作用特性及判据研究. 振动与冲击. 2019(03): 24-31+38 .
    25. 李茂,侯海量,李典,陈鹏宇,李永清,朱锡. 动态爆炸战斗部对舰船舱壁的破片载荷特性研究. 兵工学报. 2019(09): 1804-1818 .
    26. 李勇,肖伟,程远胜,刘均,张攀. 冲击波与破片对波纹杂交夹层板的联合毁伤数值研究. 爆炸与冲击. 2018(02): 279-288 . 本站查看
    27. 朱子旭,朱锡,李永清,陈悦. 复合材料夹芯结构研究现状及其在船舶工程的应用. 舰船科学技术. 2018(03): 1-7 .
    28. 李德聪,段宏,吴国民,周心桃,杨雄辉. 船内爆炸载荷特性及对舰船结构毁伤研究综述. 中国舰船研究. 2018(01): 7-16 .
    29. 田力,胡建伟,朱运华. 近爆冲击波和破片联合作用下钢筋混凝土剪力墙的动态响应及参数分析. 天津大学学报(自然科学与工程技术版). 2018(03): 241-248 .
    30. 苗润,王伟力,吴世永,刘宏杰. 小型舰艇复合防护结构加筋板抗侵彻能力分析. 兵器装备工程学报. 2018(10): 1-5 .
    31. 苗润,王伟力,刘宏杰,吴世永,曾亮. 冲击波效应对舰船上下舱毁伤的数值模拟研究. 系统仿真学报. 2018(12): 4778-4785 .
    32. 田力,胡建伟. 近爆冲击波和破片群联合作用下I-V型夹芯板的防护性能研究. 中南大学学报(自然科学版). 2018(11): 2831-2842 .
    33. 苗润,王伟力,吴世永,杜茂华. 半穿甲战斗部对带有复合装甲舱室的毁伤分析. 中国测试. 2018(12): 19-27 .
    34. 马志刚,苗润,王伟力,杜茂华,谭波. 船用复合结构加筋板侵彻过程的数值模拟研究. 中国测试. 2018(12): 75-79 .
    35. 李典,侯海量,戴文喜,朱锡,李茂,陈长海. 爆炸冲击波和破片联合作用下玻璃纤维夹芯复合结构毁伤特性实验研究. 兵工学报. 2017(05): 877-885 .
    36. 李茂,侯海量,朱锡,黄晓明,李典,陈长海,胡年明. 结构间隙对芳纶纤维增强复合装甲结构抗侵彻性能的影响. 兵工学报. 2017(09): 1797-1805 .
    37. 刘贵兵,侯海量,朱锡,张国栋. 液滴对爆炸冲击波的衰减作用. 爆炸与冲击. 2017(05): 844-852 . 本站查看
    38. 李茂,朱锡,侯海量,李典,陈长海,郑红伟,徐伟. 冲击波和高速破片联合作用下固支方板毁伤效应数值模拟. 国防科技大学学报. 2017(06): 64-70 .
    39. 郑盼,朱锡,李永清,朱子旭. 纳米SIO_2气凝胶毡与高强聚乙烯复合抗弹结构隔热性能研究. 舰船科学技术. 2017(05): 41-45+48 .
    40. 尹群,李舒,王珂. 冲击毁伤载荷作用下新型舰船舱壁结构型式研究. 舰船科学技术. 2017(11): 6-11 .
    41. 何翔,朱锡,李永清,郑盼. 复合抗弹结构设计及隔热性能验证. 舰船科学技术. 2017(09): 42-46+70 .
    42. 郑盼,李永清,朱锡,熊虎. 新型水面舰艇防护结构模型制作工艺及装舰可行性分析. 中国舰船研究. 2017(03): 51-57 .
    43. 田力,朱运华. 冲击波和破片联合作用下RC柱的损伤分析. 建筑科学与工程学报. 2017(02): 64-70 .
    44. 刘贵兵,侯海量,朱锡. 冲击波与液滴相互作用特性研究. 振动与冲击. 2017(13): 45-52 .
    45. 李典,朱锡,侯海量,李茂,陈长海. 近距爆炸破片作用下芳纶纤维夹芯复合舱壁结构毁伤特性实验研究. 兵工学报. 2016(08): 1436-1442 .
    46. 徐功慧,李家波,赵红光,邵建军. 水中兵器毁伤效能评估现状及发展. 工程爆破. 2016(02): 38-42 .
    47. 张健,尹群,张克勇,王珂. 冲击波作用下舰船新型双层舱壁抗爆性能比较. 江苏科技大学学报(自然科学版). 2016(04): 309-315 .
    48. 郑盼,朱锡,李永清. SIO_2气凝胶毡/陶瓷棉/高强聚乙烯多层复合抗弹结构隔热性能试验. 中国舰船研究. 2016(05): 78-83+99 .
    49. 尹群,施绍刚,王珂,王海. 破片侵彻X型夹芯双层舱壁结构的数值分析. 舰船科学技术. 2015(S1): 27-34 .
    50. 李茂,朱锡,侯海量,陈长海,李典,胡年明. 冲击波和高速破片对固支方板的联合作用数值模拟. 中国舰船研究. 2015(06): 60-67 .

    Other cited types(33)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (3640) PDF downloads(120) Cited by(83)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return