Volume 40 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
HE Ming, ZHANG Aman, LIU Yunlong. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes[J]. Explosion And Shock Waves, 2020, 40(11): 111402. doi: 10.11883/bzycj-2020-0110
Citation: HE Ming, ZHANG Aman, LIU Yunlong. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes[J]. Explosion And Shock Waves, 2020, 40(11): 111402. doi: 10.11883/bzycj-2020-0110

Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes

doi: 10.11883/bzycj-2020-0110
  • Received Date: 2020-04-08
  • Rev Recd Date: 2020-05-22
  • Publish Date: 2020-11-05
  • To address the problem of double-structures subjected to underwater explosion, the interaction mechanism between explosion bubbles and double-layer structures with circular hole was studied. And the characteristics such as cabin inrush and flow field change were analyzed by an Eulerian finite element numerical model. First of all, the numerical model was verified through discharge experiments, and it turned out that the numerical results agreed well with the experimental results. Then, the interaction behaviors under different initial conditions were summarized. Under the combined action of internal air, fluid inertia and breach induction, the bubble’s segmentation occurs during the bubble evolution process. When the size coefficient of the inner-layer breach is less than 0.5, the secondary water hump phenomenon occurs in the inner-cabin and the shape of the inrush is slender. When the explosive detonation position coefficient is less than 0.1, the re-closing and breaking of the free surface will take place. The influence of the free surface in the shell on the cabin inrush is complicated and when the water level is full, the rapid surge will reduce the emergency time of the ship.
  • loading
  • [1]
    张阿漫, 王诗平, 彭玉祥, 等. 水下爆炸与舰船毁伤研究进展 [J]. 中国舰船研究, 2019, 14(3): 1–13. DOI: 10.19693/j.issn.1673-3185.01608.

    ZHANG A M, WANG S P, PENG Y X, et al. Research progress in underwater explosion and its damage to ship structures [J]. Chinese Journal of Ship Research, 2019, 14(3): 1–13. DOI: 10.19693/j.issn.1673-3185.01608.
    [2]
    金键, 朱锡, 侯海量, 等. 水下爆炸载荷下舰船响应与毁伤研究综述 [J]. 水下无人系统学报, 2017, 25(6): 396–409. DOI: 10.11993/j.issn.2096-3920.2017.05.002.

    JIN J, ZHU X, HOU H L, et al. Review of dynamic response and damage mechanism of ship structure subjected to underwater explosion load [J]. Journal of Unmanned Undersea Systems, 2017, 25(6): 396–409. DOI: 10.11993/j.issn.2096-3920.2017.05.002.
    [3]
    KLASEBOER E, KHOO B C, HUNG K C. Dynamics of an oscillating bubble near a floating structure [J]. Journal of Fluids and Structures, 2005, 21(4): 395–412. DOI: 10.1016/j.jfluidstructs.2005.08.006.
    [4]
    WANG S P, ZHANG A M, LIU Y L et al. Bubble dynamics and its applications [J]. Journal of Hydrodynamics, 2018, 30(6): 975–91. DOI: 10.1007/s42241-018-0141-3.
    [5]
    张洪, 吴红波, 夏曼曼, 等. 水下爆炸边界效应的研究进展 [J]. 煤矿爆破, 2018(5): 1–5.

    ZHANG H, WU H B, XIA M M, et al. Research progress of the boundary effect on underwater blasting [J]. Coal Mine Blasting, 2018(5): 1–5.
    [6]
    张弩, 宗智. 水下爆炸气泡载荷作用下船体梁的动态水弹性响应 [J]. 船舶力学, 2015, 19(5): 582–591. DOI: 10.3969/j.issn.1007-7294.2015.05.013.

    ZHANG N, ZONG Z. Dynamic hydro-elastic response of a ship hull girder subjected to underwater explosion bubbles [J]. Journal of Ship Mechanics, 2015, 19(5): 582–591. DOI: 10.3969/j.issn.1007-7294.2015.05.013.
    [7]
    GAO J G, CHEN Z H, HUANG Z G et al. Numerical investigations on the oblique water entry of high-speed projectiles [J]. Applied Mathematics and Computation, 2019, 362: 124547. DOI: 10.1016/j.amc.2019.06.061.
    [8]
    张振华, 牟金磊, 陈崧, 等. 大型水面舰艇在重型鱼雷水下近距爆炸作用下的毁伤效应 [J]. 海军工程大学学报, 2013, 25(1): 48–53. DOI: 10.7495/j.issn.1009-3486.2013.01.006.

    ZHANG Z H, MU J L, CHEN S, et al. Anomalous dynamic response of ship beam to near-field underwater explosion of heavy torpedo [J]. Journal of Naval University of Engineering, 2013, 25(1): 48–53. DOI: 10.7495/j.issn.1009-3486.2013.01.006.
    [9]
    殷彩玉, 金泽宇, 谌勇, 等. 多孔覆盖层水下爆炸流固耦合分析 [J]. 振动与冲击, 2017, 36(12): 7–11; 49. DOI: 10.13465/j.cnki.jvs.2017.12.002.

    YIN C Y, JIN Z Y, CHEN Y, et al. Fluid-structure interaction effects of cellular claddings to underwater explosion [J]. Journal of Vibration and Shock, 2017, 36(12): 7–11; 49. DOI: 10.13465/j.cnki.jvs.2017.12.002.
    [10]
    张伦平, 潘建强, 刘建湖, 等. 多层结构水下爆炸破坏效应研究 [C] // 第十届全国冲击动力学讨论会论文集. 太原: 中国力学学会, 2011: 1−13.
    [11]
    ZHANG A M, CUI P, CUI J, et al. Experimental study on bubble dynamics subject to buoyancy [J]. Journal of Fluid Mechanics, 2015, 776: 137–60. DOI: 10.1017/jfm.2015.323.
    [12]
    LIU Y L, WANG S P, ZHANG A M. Interaction between bubble and air-backed plate with circular hole [J]. Physics of Fluids, 2016, 28(6): 062105. DOI: 10.1063/1.4953010.
    [13]
    LIU N N, WU W B, ZhANG A M et al. Experimental and numerical investigation on bubble dynamics near a free surface and a circular opening of plate [J]. Physics of Fluids, 2017, 29(10): 107102. DOI: 10.1063/1.4999406.
    [14]
    刘润泉, 白雪飞, 朱锡. 舰船单元结构模型水下接触爆炸破口试验研究 [J]. 海军工程大学学报, 2001, 13(5): 41–46. DOI: 10.3969/j.issn.1009-3486.2001.05.011.

    LIU R Q, BAI X F, ZHU X, et al. Breach experiment research of vessel element structure models subjected to underwater contact explosion [J]. Journal of Naval University of Engineering, 2001, 13(5): 41–46. DOI: 10.3969/j.issn.1009-3486.2001.05.011.
    [15]
    李金河, 汪斌, 王彦平, 等. 不同装药形状TNT水中爆炸近场冲击波传播的实验研究 [J]. 火炸药学报, 2018, 41(5): 461–464; 500. DOI: 10.14077/j.issn.1007-7812.2018.05.007.

    LI J H, WANG B, WANG Y P, et al. Experimental study on near-field shock wave propagation of underwater explosion of TNT with different charge shapes [J]. Chinese Journal of Explosives & Propellants, 2018, 41(5): 461–464; 500. DOI: 10.14077/j.issn.1007-7812.2018.05.007.
    [16]
    杨棣, 姚熊亮, 王军, 等. 接触爆炸载荷作用下船体板架破口大小的预测 [J]. 中国造船, 2014, 55(2): 77–84. DOI: 10.3969/j.issn.1000-4882.2014.02.009.

    YANG D, YAO X L, WANG J, et al. Forecast of crevasse size of hull grillage in contact explosion [J]. Shipbuilding of China, 2014, 55(2): 77–84. DOI: 10.3969/j.issn.1000-4882.2014.02.009.
    [17]
    LI S, Li Y B, ZHANG A M. Numerical analysis of the bubble jet impact on a rigid wall [J]. Applied Ocean Research, 2015, 50: 227–236. DOI: 10.1016/j.apor.2015.02.003.
    [18]
    汪浩, 程远胜, 刘均, 等. 新型矩形蜂窝夹芯夹层加筋圆柱壳抗水下爆炸冲击载荷分析 [J]. 振动与冲击, 2011, 30(1): 162–166; 226. DOI: 10.3969/j.issn.1000-3835.2011.01.036.

    WANG H, CHENG Y S, LIU J, et al. Anti-shock analysis for new type rectangular honeycomb sandwich stiffened cylindrical shells subjected to underwater explosion shock load [J]. Journal of Vibration and Shock, 2011, 30(1): 162–166; 226. DOI: 10.3969/j.issn.1000-3835.2011.01.036.
    [19]
    ZHANG A M, LIU Y L. Improved three-dimensional bubble dynamics model based on boundary element method [J]. Journal of Computational Physics, 2015, 294: 208–223. DOI: 10.1016/j.jcp.2015.03.049.
    [20]
    LI T, WANG S P, LI S, et al. Numerical investigation of an underwater explosion bubble based on FVM and VOF [J]. Applied Ocean Research, 2018, 74: 49–58. DOI: 10.1016/j.apor.2018.02.024.
    [21]
    王志凯, 周鹏, 孙波, 等. 气泡及其破碎兴波对浮动冲击平台影响探究 [J]. 爆炸与冲击, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.

    WANG Z K, ZHOU P, SUN B, et al. Influence of bubbles and breaking waves on floating shock platform [J]. Explosion and Shock Waves, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.
    [22]
    BENSON D J. Computational methods in lagrangian and eulerian hydrocodes [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2−3): 235–394. DOI: 10.1016/0045-7825(92)90042-I.
    [23]
    LIU Y L, ZHANG A M, TIAN Z L, et al. Investigation of free-field underwater explosion with Eulerian finite element method [J]. Ocean Engineering, 2018, 166: 182–190. DOI: 10.1016/j.oceaneng.2018.08.001.
    [24]
    HE M, ZHANG A M, LIU Y L. Prolonged simulation of near-free surface underwater explosion based on Eulerian finite element method [J]. Theoretical and Applied Mechanics Letters, 2020, 10(1): 16–22. DOI: 10.1016/j.taml.2020.01.003.
    [25]
    TIAN Z L, LIU Y L, ZHANG A M, et al. Energy dissipation of pulsating bubbles in compressible fluids using the Eulerian finite-element method [J]. Ocean Engineering, 2020, 196: 106714. DOI: 10.1016/j.oceaneng.2019.106714.
    [26]
    QIU J X, LIU T G, KHOO B C. Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with ghost fluid method [J]. Communications in Computational Physics, 2008, 3(2): 479–504.
    [27]
    FELIPPA C A. A family of early-time approximations for fluid-structure interaction [J]. Journal of Applied Mechanics, 1980, 47(4): 703–708. DOI: 10.1115/1.3153777.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (3577) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return