ZHANG Lei, WU Hao, ZHAO Qiang, WANG Xing, REN Xinjian, WANG Jimin, KONG Defeng. Calculation method of damage effects of underground engineering objectives based on data mining technology[J]. Explosion And Shock Waves, 2021, 41(3): 031101. doi: 10.11883/bzycj-2020-0114
Citation: ZHANG Lei, WU Hao, ZHAO Qiang, WANG Xing, REN Xinjian, WANG Jimin, KONG Defeng. Calculation method of damage effects of underground engineering objectives based on data mining technology[J]. Explosion And Shock Waves, 2021, 41(3): 031101. doi: 10.11883/bzycj-2020-0114

Calculation method of damage effects of underground engineering objectives based on data mining technology

doi: 10.11883/bzycj-2020-0114
  • Received Date: 2020-04-17
  • Rev Recd Date: 2020-11-26
  • Available Online: 2021-03-05
  • Publish Date: 2021-03-10
  • Aiming at low calculation accuracy of damage effect caused by less data, uneven, discontinuity and narrow distribution of damage experimental data, data mining technology is introduced to calculate damage effect. The database manages damage metadata and the data cleaning technology is used to identify and eliminate dead points’ data in order to control the data quality in database. An algorithm evaluation method is established to select the optimal empirical algorithm. The dimensionality reduction of high-dimensional damage data is achieved through feature selection and the main control parameters are chosen to train neural network model and k-nearest neighbor search. The “three-stage” damage effects calculation model based on data fusion has been established. The model can be used to calculate weapon damage effect based on experimental data, the empirical algorithm and the BP neural network model. The software has been developed to complete the damage calculation, and the results shows that the proposed method can meet the needs of practical application.
  • [1]
    任辉启, 穆朝民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护[M]. 北京: 科学出版社, 2016: 54−58.
    [2]
    KANTARDZIC M. Data mining: concepts, models, methods, and algorithms [M]. 2nd ed. Hoboken: Wiley Publishing, Inc, 2011: 135−137.
    [3]
    HE Z, WU Q, WEN L J, et al. A process mining approach to improve emergency rescue processes of fatal gas explosion accidents in Chinese coal mines [J]. Safety Science, 2019, 111: 154–166. DOI: 10.1016/j.ssci.2018.07.006.
    [4]
    RYAN S, THALER S. Artificial neural networks for characterizing Whipple shield performance [J]. Procedia Engineering, 2013, 58: 31–38. DOI: 10.1016/j.proeng.2013.05.006.
    [5]
    RYAN S, THALER S, KANDANAARACHCHI S. Machine learning methods for predicting the outcome of hypervelocity impact events [J]. Expert Systems with Applications, 2016, 45: 23–39. DOI: 10.1016/j.eswa.2015.09.038.
    [6]
    李建光, 李永池, 王玉岚. 人工神经网络在弹体侵彻混凝土深度中的应用 [J]. 中国工程科学, 2007, 9(8): 77–81. DOI: 10.3969/j.issn.1009-1742.2007.08.016.

    LI J G, LI Y C, WANG Y L. Penetration depth of projectiles into concrete using artificial neural network [J]. Engineering Sciences, 2007, 9(8): 77–81. DOI: 10.3969/j.issn.1009-1742.2007.08.016.
    [7]
    金胜兵, 刘军, 张磊, 等. 数据挖掘技术在混凝土侵彻深度分析中的应用[J]. 解放军理工大学学报(自然科学版) [2020-09-21]. http://kns.cnki.net/kcms/detail/32.1430.N.20170602.1014.002.html. DOI: 10.12018/j.issn.1009-3443.20170223003/2017.06.02.

    JIN S B, LIU J, ZHANG L, et al. The application of data mining technology in the analysis of the projectile penetration depth in concrete[J]. Journal of PLA University of Science and Technology (Natural Science Edition) [2020-09-21]. http://kns.cnki.net/kcms/detail/32.1430.N.20170602.1014.002.html. DOI: 10.12018/j.issn.1009-3443.20170223003/2017.06.02.
    [8]
    杨秀敏, 邓国强. 常规钻地武器破坏效应的研究现状和发展 [J]. 后勤工程学院学报, 2016, 32(5): 1–9. DOI: 10.3969/j.issn.1672-7843.2016.05.001.

    YANG X M, DENG G Q. The research status and development of damage effect of conventional earth penetration weapon [J]. Journal of Logistical Engineering University, 2016, 32(5): 1–9. DOI: 10.3969/j.issn.1672-7843.2016.05.001.
    [9]
    张国星, 强洪夫, 陈福振, 等. 钻地弹侵彻地下工事问题的研究与发展 [J]. 飞航导弹, 2018(6): 34–38. DOI: 10.16338/j.issn.1009-1319.20170372.

    ZHAGN G X, QIANG H F, CHEN F Z, et al. Research and development of the penetration of ground-penetrating projectiles into underground engineering [J]. Aerodynamic Missile Journal, 2018(6): 34–38. DOI: 10.16338/j.issn.1009-1319.20170372.
    [10]
    梁国栋. 钻地弹攻击地下目标的效能评估[D]. 南京: 南京理工大学, 2007: 18−24.
    [11]
    吴越. 钻地弹对典型地堡侵爆复合毁伤效能影响要素研究[D]. 南京: 南京理工大学, 2014: 45−67.
    [12]
    潘丽娜. 神经网络及其组合模型在时间序列预测中的研究与应用[D]. 兰州: 兰州大学, 2018: 32−56.
    [13]
    黄丽. 基于云平台的预测分析算法的研究与实现[D]. 北京: 北京邮电大学, 2016: 1−32, 24−35.
    [14]
    FLETCHER L, KATKOVNIK V, STEFFENS F E, et al. Optimizing the number of hidden nodes of a feedforward artificial neural network [C]//Proceedings of 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence. Anchorage: IEEE, 1998. DOI: 10.1109/IJCNN.1998.686018.
    [15]
    GWALTNEY R C. Missile generation and protection in light-water-cooled power reactor plants: ORNL NSIC-22 [R]. Oak Ridge: Oak Ridge National Laboratory, 1968: 1−23.
    [16]
    YOUNG C W. The development of empirical equation for predicting depth of an earth penetrating projectile: SC-DR-67-60 [R]. Albuquerque: Sandia National Laboratories, 1967: 1−11.
    [17]
    NDRC. Effects of impact and explosion: division 2 [R]. Washington: National Defence Research Committee, 1946: 1−7.
    [18]
    FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [19]
    HAN J W, KAMBER M, PEI J. Data mining: concepts and techniques [M]. 3rd ed. Amsterdam: Elsevier Inc, 2012.
    [20]
    BECKMANN N, KRIEGEL H P, SCHNEIDER R, et al. The R*-tree: an efficient and robust access method for points and rectangles [J]. Acm Sigmod Record, 1990, 19(2): 322–331. DOI: 10.1145/93605.98741.
  • Cited by

    Periodical cited type(9)

    1. 佘维,张人中,田钊,刘炜,孔德锋. 基于改进混合密度网络的毁伤效应预测方法. 郑州大学学报(理学版). 2024(01): 9-15 .
    2. 秦帅,刘浩,陈力,张磊. 融合先验知识的混凝土侵彻深度试验数据异常点检测算法. 爆炸与冲击. 2024(03): 70-79 . 本站查看
    3. Shuai Qin,Hao Liu,Jianhui Wang,Qiang Zhao,Lei Zhang. Physics-data coupling-driven method to predict the penetration depth into concrete targets. Theoretical & Applied Mechanics Letters. 2024(03): 184-192 .
    4. 刘诗瑾,杨知玲. 基于剪枝处理的多源异构数据双挖掘仿真. 计算机仿真. 2024(08): 513-516+534 .
    5. 魏庆栋,王忠,江光德,蒋鸣,汤家军. 导弹打击目标的毁伤效果评估方法研究综述. 战术导弹技术. 2023(03): 76-88 .
    6. 杨世旺,赵萍,黄剑,叶子强,韩晓明. 中台数据库信息共享适用性和安全性的增强. 云南师范大学学报(自然科学版). 2023(05): 54-58 .
    7. 李萌,武海军,董恒,任光,张鹏,黄风雷. 基于机器学习的混凝土侵彻深度预测模型. 兵工学报. 2023(12): 3771-3782 .
    8. 李广宁,史宪铭,陈磊,赵美. 基于LSTM神经网络的弹药消耗预测. 火力与指挥控制. 2022(06): 75-80 .
    9. 陈文庆. 基于数据挖掘的船舶通信网络失效节点自动识别方法. 舰船科学技术. 2022(19): 146-149 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (594) PDF downloads(167) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return