Citation: | ZHANG Lei, WU Hao, ZHAO Qiang, WANG Xing, REN Xinjian, WANG Jimin, KONG Defeng. Calculation method of damage effects of underground engineering objectives based on data mining technology[J]. Explosion And Shock Waves, 2021, 41(3): 031101. doi: 10.11883/bzycj-2020-0114 |
[1] |
任辉启, 穆朝民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护[M]. 北京: 科学出版社, 2016: 54−58.
|
[2] |
KANTARDZIC M. Data mining: concepts, models, methods, and algorithms [M]. 2nd ed. Hoboken: Wiley Publishing, Inc, 2011: 135−137.
|
[3] |
HE Z, WU Q, WEN L J, et al. A process mining approach to improve emergency rescue processes of fatal gas explosion accidents in Chinese coal mines [J]. Safety Science, 2019, 111: 154–166. DOI: 10.1016/j.ssci.2018.07.006.
|
[4] |
RYAN S, THALER S. Artificial neural networks for characterizing Whipple shield performance [J]. Procedia Engineering, 2013, 58: 31–38. DOI: 10.1016/j.proeng.2013.05.006.
|
[5] |
RYAN S, THALER S, KANDANAARACHCHI S. Machine learning methods for predicting the outcome of hypervelocity impact events [J]. Expert Systems with Applications, 2016, 45: 23–39. DOI: 10.1016/j.eswa.2015.09.038.
|
[6] |
李建光, 李永池, 王玉岚. 人工神经网络在弹体侵彻混凝土深度中的应用 [J]. 中国工程科学, 2007, 9(8): 77–81. DOI: 10.3969/j.issn.1009-1742.2007.08.016.
LI J G, LI Y C, WANG Y L. Penetration depth of projectiles into concrete using artificial neural network [J]. Engineering Sciences, 2007, 9(8): 77–81. DOI: 10.3969/j.issn.1009-1742.2007.08.016.
|
[7] |
金胜兵, 刘军, 张磊, 等. 数据挖掘技术在混凝土侵彻深度分析中的应用[J]. 解放军理工大学学报(自然科学版) [2020-09-21]. http://kns.cnki.net/kcms/detail/32.1430.N.20170602.1014.002.html. DOI: 10.12018/j.issn.1009-3443.20170223003/2017.06.02.
JIN S B, LIU J, ZHANG L, et al. The application of data mining technology in the analysis of the projectile penetration depth in concrete[J]. Journal of PLA University of Science and Technology (Natural Science Edition) [2020-09-21]. http://kns.cnki.net/kcms/detail/32.1430.N.20170602.1014.002.html. DOI: 10.12018/j.issn.1009-3443.20170223003/2017.06.02.
|
[8] |
杨秀敏, 邓国强. 常规钻地武器破坏效应的研究现状和发展 [J]. 后勤工程学院学报, 2016, 32(5): 1–9. DOI: 10.3969/j.issn.1672-7843.2016.05.001.
YANG X M, DENG G Q. The research status and development of damage effect of conventional earth penetration weapon [J]. Journal of Logistical Engineering University, 2016, 32(5): 1–9. DOI: 10.3969/j.issn.1672-7843.2016.05.001.
|
[9] |
张国星, 强洪夫, 陈福振, 等. 钻地弹侵彻地下工事问题的研究与发展 [J]. 飞航导弹, 2018(6): 34–38. DOI: 10.16338/j.issn.1009-1319.20170372.
ZHAGN G X, QIANG H F, CHEN F Z, et al. Research and development of the penetration of ground-penetrating projectiles into underground engineering [J]. Aerodynamic Missile Journal, 2018(6): 34–38. DOI: 10.16338/j.issn.1009-1319.20170372.
|
[10] |
梁国栋. 钻地弹攻击地下目标的效能评估[D]. 南京: 南京理工大学, 2007: 18−24.
|
[11] |
吴越. 钻地弹对典型地堡侵爆复合毁伤效能影响要素研究[D]. 南京: 南京理工大学, 2014: 45−67.
|
[12] |
潘丽娜. 神经网络及其组合模型在时间序列预测中的研究与应用[D]. 兰州: 兰州大学, 2018: 32−56.
|
[13] |
黄丽. 基于云平台的预测分析算法的研究与实现[D]. 北京: 北京邮电大学, 2016: 1−32, 24−35.
|
[14] |
FLETCHER L, KATKOVNIK V, STEFFENS F E, et al. Optimizing the number of hidden nodes of a feedforward artificial neural network [C]//Proceedings of 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence. Anchorage: IEEE, 1998. DOI: 10.1109/IJCNN.1998.686018.
|
[15] |
GWALTNEY R C. Missile generation and protection in light-water-cooled power reactor plants: ORNL NSIC-22 [R]. Oak Ridge: Oak Ridge National Laboratory, 1968: 1−23.
|
[16] |
YOUNG C W. The development of empirical equation for predicting depth of an earth penetrating projectile: SC-DR-67-60 [R]. Albuquerque: Sandia National Laboratories, 1967: 1−11.
|
[17] |
NDRC. Effects of impact and explosion: division 2 [R]. Washington: National Defence Research Committee, 1946: 1−7.
|
[18] |
FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
|
[19] |
HAN J W, KAMBER M, PEI J. Data mining: concepts and techniques [M]. 3rd ed. Amsterdam: Elsevier Inc, 2012.
|
[20] |
BECKMANN N, KRIEGEL H P, SCHNEIDER R, et al. The R*-tree: an efficient and robust access method for points and rectangles [J]. Acm Sigmod Record, 1990, 19(2): 322–331. DOI: 10.1145/93605.98741.
|