Volume 41 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
CHEN Wei, XIE Puchu, LIU Dongsheng, SHI Tongya, LI Zhiguo, WANG Yonggang. Effects of grain size on the spall behaviors of high-purity aluminum plates[J]. Explosion And Shock Waves, 2021, 41(4): 043102. doi: 10.11883/bzycj-2020-0130
Citation: CHEN Wei, XIE Puchu, LIU Dongsheng, SHI Tongya, LI Zhiguo, WANG Yonggang. Effects of grain size on the spall behaviors of high-purity aluminum plates[J]. Explosion And Shock Waves, 2021, 41(4): 043102. doi: 10.11883/bzycj-2020-0130

Effects of grain size on the spall behaviors of high-purity aluminum plates

doi: 10.11883/bzycj-2020-0130
  • Received Date: 2020-05-06
  • Rev Recd Date: 2020-06-26
  • Available Online: 2021-03-05
  • Publish Date: 2021-04-14
  • High-purity (HP) aluminum plates were cold rolled and heat treated to produce recrystallized samples with average grain sizes of 60, 100 and 500 μm, respectively. The effects of grain size on the spall response of HP aluminum plates were investigated by plate impact experiments including real-time measurements of the free surface velocity profiles by a compact all-fiber displacement interferometer system for any reflector, and post-impact fractography of soft-recovered samples by optical microscopy and scanning electron microscopy. The effect of grain size on the spall strength depends on the amplitude of peak stress. At lower peak stress loading, the dependence of the spall strength on the grain size is an inverse Hall-Petch relationship, but at higher peak stress loading, the spall strength is nearly constant with little effect of grain size. With the increase of grain size, the distribution range and size of micro-voids in the damaged sample increase, but the number of micro-voids decreases, and the grain refinement caused by the shock compression process is observed. On the other hand, with the increase of grain size, the mechanism of spallation changes from ductile intergranular fracture to quasi-brittle intergranular fracture. Some randomly distributed small metal balls are observed on the fracture surface, which is attributed to the thermal effect due to the serious plastic deformation during the growth and coalescence of micro-voids.
  • loading
  • [1]
    WANG Y M, CHEN M W, ZHOU F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419(6910): 912–915. DOI: 10.1038/nature01133.
    [2]
    FANG T H, LI W L, TAO N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331(6024): 1587–1590. DOI: 10.1126/science.1200177.
    [3]
    VALIEV R. Nanostructuring of metals by severe plastic deformation for advanced properties [J]. Nature Materials, 2004, 3(8): 511–516. DOI: 10.1038/nmat1180.
    [4]
    HAHN E N, MEYERS M A. Grain-size dependent mechanical behavior of nanocrystalline metals [J]. Materials Science and Engineering: A, 2015, 646: 101–134. DOI: 10.1016/j.msea.2015.07.075.
    [5]
    ESTRIN Y, VINOGRADOV A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science [J]. Acta Materialia, 2013, 61(3): 782–817. DOI: 10.1016/j.actamat.2012.10.038.
    [6]
    REMINGTON T P, HAHN E N, ZHAO S. et al Spall strength dependence on grain size and strain rate in tantalum [J]. Acta Materialia, 2018, 158: 313–329. DOI: 10.1016/j.actamat.2018.07.048.
    [7]
    MINICH R W, CAZAMIAS J U, KUMAR M, et al. Effect of microstructural length scales on spall behavior of copper [J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2663–2673. DOI: 10.1007/s11661-004-0212-7.
    [8]
    兰胜威, 曾新吾. 晶粒度对纯铝动态力学性能的影响 [J]. 爆炸与冲击, 2008, 28(5): 462–466. DOI: 10.11883/1001-1455(2008)05-0462-05.

    LAN S W, ZENG X W. Effect of grain size on dynamic mechanical properties of pure aluminum [J]. Explosion and Shock Waves, 2008, 28(5): 462–466. DOI: 10.11883/1001-1455(2008)05-0462-05.
    [9]
    TRIVEDI P B, ASAY J R, GUPTA Y M, et al. Influence of grain size on the tensile response of aluminum under plate-impact loading [J]. Journal of Applied Physics, 2007, 102(8): 083513. DOI: 10.1063/1.2798497.
    [10]
    CHEN X, ASAY J R, DWIVEDI S K, et al. Spall behavior of aluminum with varying microstructures [J]. Journal of Applied Physics, 2006, 99(2): 023528. DOI: 10.1063/1.2165409.
    [11]
    ESCOBEDO J P, DENNIS-KOLLER D, CERRETA E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper [J]. Journal of Applied Physics, 2011, 110(3): 033513. DOI: 10.1063/1.3607294.
    [12]
    CHEN T, JIANG Z X, PENG H, et al. Effect of grain size on the spall fracture behaviour of pure copper under plate-impact loading [J]. Strain, 2015, 51(3): 190–197. DOI: 10.1111/str.12132.
    [13]
    WHELCHEL R L, KENNEDY G B, DWIVEDI S K, et al. Spall behavior of rolled aluminum 5083-H116 plate [J]. Journal of Applied Physics, 2013, 113(23): 233506. DOI: 10.1063/1.4811452.
    [14]
    WILLIAMS C L, RAMESH K T, DANDEKAR D P. Spall response of 1100-O aluminum [J]. Journal of Applied Physics, 2012, 111(12): 123528. DOI: 10.1063/1.4729305.
    [15]
    WENG J D, TAN H, WANG X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution [J]. Applied Physics Letters, 2006, 89(11): 111101. DOI: 10.1063/1.2335948.
    [16]
    裴晓阳, 彭辉, 贺红亮, 等. 延性金属层裂自由面速度曲线物理涵义解读 [J]. 物理学报, 2015, 64(3): 034601. DOI: 10.7498/aps.64.034601.

    PEI X Y, PENG H, HE H L, et al. Discussion on the physical meaning of free surface velocity curve in ductile spallation [J]. Acta Physica Sinica, 2015, 64(3): 034601. DOI: 10.7498/aps.64.034601.
    [17]
    ANTOUN T, SEAMAN L, CURRAN D R, et al. Spall fracture [M]. New York, USA: Springer, 2003: 90−92. DOI: 10.1007/b97226.
    [18]
    KANEL G I, RAZORENOV S V, UTKIN A V, et al. Simulation of spall fracture of aluminum and magnesium over a wide range of load duration and temperature [J]. International Journal of Impact Engineering, 1997, 20(6–10): 467–478. DOI: 10.1016/S0734-743X(97)87435-0.
    [19]
    AHN D C, SOFRONIS P, KUMAR M, et al. Void growth by dislocation-loop emission [J]. Journal of Applied Physics, 2007, 101(6): 063514. DOI: 10.1063/1.2710346.
    [20]
    祁美兰. 高纯铝拉伸型动态破坏的临界行为研究[D]. 武汉: 武汉理工大学, 2007: 34–46. DOI: 10.7666/d.y1174895.

    QI M L. Critical behavior in dynamic tensile fracture of high purity aluminum [D]. Wuhan: Wuhan University of Technology, 2007: 34–46. DOI: 10.7666/d.y1174895.
    [21]
    QI M L, LUO C, HE H L, et al. Damage property of incompletely spalled aluminum under shock wave loading [J]. Journal of Applied Physics, 2012, 111(4): 043506. DOI: 10.1063/1.3681301.
    [22]
    SENCER B H, MALOY S A, GARY III G T. The influence of shock-pulse shape on the structure/property behavior of copper and 316L austenitic stainless steel [J]. Acta Materialia, 2005, 53(11): 3293–3303. DOI: 10.1016/j.actamat.2005.03.037.
    [23]
    张凤国, 周洪强. 晶粒尺度对延性金属材料层裂损伤的影响 [J]. 物理学报, 2013, 62(16): 164601. DOI: 10.7498/aps.62.164601.

    ZHANG F G, ZHOU H Q. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metal [J]. Acta Physica Sinica, 2013, 62(16): 164601. DOI: 10.7498/aps.62.164601.
    [24]
    LIAO Y, XIANG M Z, ZENG X G, et al. Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum [J]. Mechanics of Materials, 2015, 84: 12–27. DOI: 10.1016/j.mechmat.2015.01.007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (535) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return