Volume 41 Issue 5
May  2021
Turn off MathJax
Article Contents
SUN Xuxu, GUO Jin, LU Shouxiang. Explosion hazard in the concentrated ventilation tube for a group of diesel tanks and its suppression technologies[J]. Explosion And Shock Waves, 2021, 41(5): 055401. doi: 10.11883/bzycj-2020-0131
Citation: SUN Xuxu, GUO Jin, LU Shouxiang. Explosion hazard in the concentrated ventilation tube for a group of diesel tanks and its suppression technologies[J]. Explosion And Shock Waves, 2021, 41(5): 055401. doi: 10.11883/bzycj-2020-0131

Explosion hazard in the concentrated ventilation tube for a group of diesel tanks and its suppression technologies

doi: 10.11883/bzycj-2020-0131
  • Received Date: 2020-05-06
  • Rev Recd Date: 2021-03-02
  • Available Online: 2021-04-21
  • Publish Date: 2021-05-05
  • In this study, the explosion hazard and suppression technology were investigated in a concentrated ventilation tube filled with diesel fuel under room temperature and environmental pressure. A high-speed camera (model: nac HX-3) and pressure sensors (model: CY-YD-205) were used to record the flame picture and explosion overpressure. New explosion suppression balls and an ordinary corrugated flame arrester were employed as explosion suppression apparatuses. The results indicate that the explosion flame can propagate into the adjacent fuel tank through the ventilation tube under room temperature and environmental pressure, causing the second explosion. In addition, the ordinary corrugated flame arrester fails to suppress explosion, and the new explosion suppression balls have better anti-explosion effect. Compared to the case of a smooth ventilation tube, the maximum explosion overpressure can be significantly decreased from about 552.5 kPa to 35.0 kPa in the ignited chamber after the new explosion suppression balls are introduced into the tube. The superior explosion suppression effect of the explosion suppression balls can be due to the hollow porous structures. The porous structures not only can significantly increase the specific surface area and heat loss, but also can effectively segment and weaken the reaction surface.
  • loading
  • [1]
    WANG H Z, LU C B, AN G J, et al. Assessment method of liquid fuel field explosion hazardousness [J]. Procedia Engineering, 2014, 84: 394–401. DOI: 10.1016/j.proeng.2014.10.449.
    [2]
    LU C B, AN G J, XIONG C H, et al. Progress on fire and explosion suppression technologies for light petroleum fuel [J]. Procedia Engineering, 2014, 84: 384–393. DOI: 10.1016/j.proeng.2014.10.448.
    [3]
    黄勇, 解立峰, 鲁长波, 等. 安全柴油燃爆性能的静爆试验研究 [J]. 爆破器材, 2015, 44(6): 20–24. DOI: 10.3969/j.issn.1001-8352.2015.06.005.

    HUANG Y, XIE L F, LU C B, et al. Static experimental for combustion and explosion performances of safety diesel fuel [J]. Explosive Materials, 2015, 44(6): 20–24. DOI: 10.3969/j.issn.1001-8352.2015.06.005.
    [4]
    刘健, 姚箭, 宋述忠, 等. 柴油的烤燃燃爆性能实验 [J]. 爆炸与冲击, 2018, 38(3): 534–540. DOI: 10.11883/bzycj-2016-0291.

    LIU J, YAO J, SONG S Z, et al. Experimental study on cook-off performance of diesel fuel [J]. Explosion and Shock Waves, 2018, 38(3): 534–540. DOI: 10.11883/bzycj-2016-0291.
    [5]
    黄勇, 解立峰, 鲁长波, 等. 柴油云雾最小点火能量的实验研究 [J]. 高压物理学报, 2015, 29(2): 149–154. DOI: 10.11858/gywlxb.2015.02.010.

    HUANG Y, XIE L F, LU C B, et al. Experimental study on minimum ignition energy of diesel-air cloud [J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 149–154. DOI: 10.11858/gywlxb.2015.02.010.
    [6]
    罗琳, 解立峰, 韩志伟, 等. 柴油的抛撒成雾及燃爆特性研究 [J]. 高压物理学报, 2015, 29(3): 213–218. DOI: 10.11858/gywlxb.2015.03.008.

    LUO L, XIE L F, HAN Z W, et al. Cloud character in explosion dispersion and combustion feature of diesel [J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 213–218. DOI: 10.11858/gywlxb.2015.03.008.
    [7]
    宋刚, 张文铖, 封晓杰, 等. 油箱内部强起爆条件下安全柴油燃爆性能的试验研究 [J]. 爆破器材, 2018, 47(2): 28–32. DOI: 10.3969/j.issn.1001-8352.2018.02.006.

    SONG G, ZHANG W C, FENG X J, et al. Experimental study on combustion and explosion performance of safe diesel under strong detonation conditions in fuel tank [J]. Explosive Materials, 2018, 47(2): 28–32. DOI: 10.3969/j.issn.1001-8352.2018.02.006.
    [8]
    贾佳, 吴晓伟, 黎昌海. 舰船柴油舱组及其集中透气管内柴油蒸气燃爆数值模拟 [J]. 船海工程, 2018, 47(6): 21–28. DOI: 10.3963/j.issn.1671-7953.2018.06.006.

    JIA J, WU X W, LI C H. Numerical simulation of diesel evaporation explosion in diesel oil tank set with its centralized venting tube [J]. Ship and Ocean Engineering, 2018, 47(6): 21–28. DOI: 10.3963/j.issn.1671-7953.2018.06.006.
    [9]
    NG H D, RADULESCU M I, HIGGINS A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics [J]. Combustion Theory and Modelling, 2005, 9(3): 385–401. DOI: 10.1080/13647830500307758.
    [10]
    TORO E F. The equations of fluid dynamics [M] // TORO E F. Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin, Heidelberg: Springer, 2009: 1–40.
    [11]
    KIYANDA C B, MORGAN G H, NIKIFORAKIS N, et al. High resolution GPU-based flow simulation of the gaseous methane-oxygen detonation structure [J]. Journal of Visualization, 2015, 18(2): 273–276. DOI: 10.1007/s12650-014-0247-9.
    [12]
    MI X C, HIGGINS A J, NG H D, et al. Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium [J]. Physical Review Fluids, 2017, 2(5): 053201. DOI: 10.1103/PhysRevFluids.2.053201.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (372) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return