Volume 41 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
WANG Hairen, LI Shiqiang, LIU Zhifang, LEI Jianyin, LI Zhiqiang, WANG Zhihua. Mechanical behaviors of bi-directional gradient bio-inspired circular sandwich plates under blast loading[J]. Explosion And Shock Waves, 2021, 41(4): 043201. doi: 10.11883/bzycj-2020-0132
Citation: WANG Hairen, LI Shiqiang, LIU Zhifang, LEI Jianyin, LI Zhiqiang, WANG Zhihua. Mechanical behaviors of bi-directional gradient bio-inspired circular sandwich plates under blast loading[J]. Explosion And Shock Waves, 2021, 41(4): 043201. doi: 10.11883/bzycj-2020-0132

Mechanical behaviors of bi-directional gradient bio-inspired circular sandwich plates under blast loading

doi: 10.11883/bzycj-2020-0132
  • Received Date: 2020-05-06
  • Rev Recd Date: 2020-06-09
  • Available Online: 2021-03-05
  • Publish Date: 2021-04-14
  • A bi-directional gradient bionic circular sandwich plate was designed by introducing out-of-plane gradient into in-plane gradient core on the basis of Royal Water-Lily. Based on this, the responses of various bi-directional gradient circular sandwich plates under different blast loadings were simulated by using the finite element software of ABAQUS. The deflections of front and back panels, compression, deformation mode and energy absorption of different cores were analyzed emphatically, and a core arrangement mode with better blast resistant performance was obtained. The results show that: compared with a single out-of-plane gradient sandwich structure, the deflection of the back panel of bi-directional gradient sandwich structures can be effectively reduced, and the energy absorption capacity of the core can be improved through the reasonable bi-directional gradient arrangement.
  • loading
  • [1]
    ZHANG Q C, YANG X H, LI P, et al. Bioinspired engineering of honeycomb structure: using nature to inspire human innovation [J]. Progress in Materials Science, 2015, 74: 332–400. DOI: 10.1016/j.pmatsci.2015.05.001.
    [2]
    LIU Z, MEYERS M A, ZHANG Z, et al. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications [J]. Progress in Materials Science, 2017, 88: 467–498. DOI: 10.1016/j.pmatsci.2017.04.013.
    [3]
    CAI Z B, LI Z Y, DING Y, et al. Preparation and impact resistance performance of bionic sandwich structure inspired from beetle forewing [J]. Composites Part B: Engineering, 2019, 161: 490–501. DOI: 10.1016/j.compositesb.2018.12.139.
    [4]
    ZHANG Y, WANG J, WANG C H, et al. Crashworthiness of bionic fractal hierarchical structures [J]. Materials & Design, 2018, 158: 147–159. DOI: 10.1016/j.matdes.2018.08.028.
    [5]
    SONG J F, XU S C, WANG H X, et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures [J]. Thin-Walled Structures, 2018, 125: 76–88. DOI: 10.1016/j.tws.2018.01.010.
    [6]
    李世强, 李鑫, 吴桂英, 等. 梯度蜂窝夹芯板在爆炸荷载作用下的动力响应 [J]. 爆炸与冲击, 2016, 36(3): 333–339. DOI: 10.11883/1001-1455(2016)03-0333-07.

    LI S Q, LI X, WU G Y, et al. Dynamic response of functionally graded honeycomb sandwich plates under blast loading [J]. Explosion and Shock Waves, 2016, 36(3): 333–339. DOI: 10.11883/1001-1455(2016)03-0333-07.
    [7]
    ZHANG J J, WANG Z H, ZHAO L M. Dynamic response of functionally graded cellular materials based on the Voronoi model [J]. Composites Part B: Engineering, 2016, 85: 176–187. DOI: 10.1016/j.compositesb.2015.09.045.
    [8]
    WANG X K, ZHENG Z J, YU J L. Crashworthiness design of density-graded cellular metals [J]. Theoretical and Applied Mechanics Letters, 2013, 3(3): 9–13. DOI: 10.1063/2.1303101.
    [9]
    ZHENG J, QIN Q H, WANG T J. Impact plastic crushing and design of density-graded cellular materials [J]. Mechanics of Materials, 2016, 94: 66–78. DOI: 10.1016/j.mechmat.2015.11.014.
    [10]
    SHEN C J, YU T X, LU G. Double shock mode in graded cellular rod under impact [J]. International Journal of Solids and Structures, 2013, 50(1): 217–233. DOI: 10.1016/j.ijsolstr.2012.09.021.
    [11]
    SHEN C J, LU G, YU T X. Dynamic behavior of graded honeycombs: a finite element study [J]. Composite Structures, 2013, 98: 282–293. DOI: 10.1016/j.compstruct.2012.11.002.
    [12]
    YANG J, WANG S L, DING Y Y, et al. Crashworthiness of graded cellular materials: a design strategy based on a nonlinear plastic shock model [J]. Materials Science and Engineering: A, 2017, 680: 411–420. DOI: 10.1016/j.msea.2016.11.010.
    [13]
    LIANG M Z, LI Z B, LU F Y, et al. Theoretical and numerical investigation of blast responses of continuous-density graded cellular materials [J]. Composite Structures, 2017, 164: 170–179. DOI: 10.1016/j.compstruct.2016.12.065.
    [14]
    于渤, 卢天健. 蜂窝夹芯结构的面内梯度设计 [C] // 中国力学大会-2015. 上海: 中国力学学会, 2015: 87.
    [15]
    YU B, HAN B, SU P B, et al. Graded square honeycomb as sandwich core for enhanced mechanical performance [J]. Materials & Design, 2016, 89: 642–652. DOI: 10.1016/j.matdes.2015.09.154.
    [16]
    TAO Y, DUAN S Y, WEN W B, et al. Enhanced out-of-plane crushing strength and energy absorption of in-plane graded honeycombs [J]. Composites Part B: Engineering, 2017, 118: 33–40. DOI: 10.1016/j.compositesb.2017.03.002.
    [17]
    WANG H R, LI S Q, LIU Z F, et al. Investigation on the dynamic response of circular sandwich panels with the bio-inspired gradient core [J]. Thin-Walled Structures, 2020, 149: 106667. DOI: 10.1016/j.tws.2020.106667.
    [18]
    陶义, 王宗彦, 王珂, 等. 基于王莲叶脉分布的塔式起重机臂架结构仿生设计 [J]. 机械设计与制造, 2017(3): 36–39. DOI: 10.19356/j.cnki.1001-3997.2017.03.010.

    TAO Y, WANG Z Y, WANG K, et al. Structural bionic design for tower cranes boom based on King Lotus leaf vein branched structure [J]. Machinery Design & Manufacture, 2017(3): 36–39. DOI: 10.19356/j.cnki.1001-3997.2017.03.010.
    [19]
    VAZIRI A, HUTCHINSON J W. Metal sandwich plates subject to intense air shocks [J]. International Journal of Solids and Structures, 2007, 44(6): 2021–2035. DOI: 10.1016/j.ijsolstr.2006.08.038.
    [20]
    强斌, 刘宇杰, 阚前华. 粘接界面泡沫铝夹芯板的三点弯曲失效数值模拟 [J]. 材料工程, 2014, 4(11): 97–101. DOI: 10.11868/j.issn.1001-4381.2014.11.017.

    QIANG B, LIU Y J, KAN Q H. Numerical simulation for three-point bending failure of aluminum foam sandwich panels with cohesive interface [J]. Journal of Materials Engineering, 2014, 4(11): 97–101. DOI: 10.11868/j.issn.1001-4381.2014.11.017.
    [21]
    LIU Z F, HAO W Q, XIE J M, et al. Axial-impact buckling modes and energy absorption properties of thin-walled corrugated tubes with sinusoidal patterns [J]. Thin-Walled Structures, 2015, 94: 410–423. DOI: 10.1016/j.tws.2015.05.002.
    [22]
    FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. DOI: 10.1115/1.1629109.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (976) PDF downloads(136) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return