Volume 41 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
BI Zheng, ZHOU Yunbo, WU Kai, LI Mingxing, SUN Xiaowang. Improved design of vehicle bottom protective components based on topology optimization[J]. Explosion And Shock Waves, 2021, 41(4): 043901. doi: 10.11883/bzycj-2020-0141
Citation: BI Zheng, ZHOU Yunbo, WU Kai, LI Mingxing, SUN Xiaowang. Improved design of vehicle bottom protective components based on topology optimization[J]. Explosion And Shock Waves, 2021, 41(4): 043901. doi: 10.11883/bzycj-2020-0141

Improved design of vehicle bottom protective components based on topology optimization

doi: 10.11883/bzycj-2020-0141
  • Received Date: 2020-05-11
  • Rev Recd Date: 2020-08-14
  • Available Online: 2021-04-14
  • Publish Date: 2021-04-14
  • In order to improve the anti-explosion performance of the bottom protective components of the vehicle and reduce the threat of the body floor deformation to the occupants in the vehicle, topology optimization was conducted based on hybrid cellular automation (HCA) to design the stiffening beams in the protective components, the best material distribution form of the stiffening beams was obtained, the topology optimization results was interpreted and then the stiffening beams was redesigned. In order to further improve the anti-explosion performance of the protective components, the multi-objective optimization method was used to optimize the design of the stiffening beams, the optimal scheme for the parameter combination of the beams was obtained by selecting the peak deflection of test plate, the maximum kinetic energy of test plate and the mass of the protective components as objectives, the mass of the protective components as constraint, the thickness and cross-sectional dimensions of the beams as design variables. The results show that, compared with the original design, the scheme increase the anti-explosion performance of the protective components without increasing the structural mass. After optimization the peak deflection of test plate is reduced by 5%, and the maximum kinetic energy of test plate is reduced by 11.58%.
  • loading
  • [1]
    李红勋, 谭柏春, 贾楠, 等. 美军战术轮式车辆发展策略研究 [J]. 军事交通学院学报, 2012, 14(10): 83–87. DOI: 10.3969/j.issn.1674-2192.2012.10.022.

    LI H X, TAN B C, JIA N, et al. Research on US military tactic wheeled vehicle strategy [J]. Journal of Military Transportation University, 2012, 14(10): 83–87. DOI: 10.3969/j.issn.1674-2192.2012.10.022.
    [2]
    张钱城, 郝方楠, 李裕春, 等. 爆炸冲击载荷作用下车辆和人员的损伤与防护 [J]. 力学与实践, 2014, 36(5): 527–539. DOI: 10.6052/1000-0879-13-539.

    ZHANG Q C, HAO F N, LI Y C, et al. Damage and protection of vehicles and personnel under blast loading [J]. Mechanics in Engineering, 2014, 36(5): 527–539. DOI: 10.6052/1000-0879-13-539.
    [3]
    韩辉, 焦丽娟, 徐平. 战车底部防雷技术研究 [J]. 四川兵工学报, 2007, 28(3): 11–13. DOI: 10.3969/j.issn.1006-0707.2007.03.004.

    HAN H, JIAO L J, XU P. Study on protection technology for combat vehicles against belly-attack anti-tank mine [J]. Journal of Sichuan Ordnance, 2007, 28(3): 11–13. DOI: 10.3969/j.issn.1006-0707.2007.03.004.
    [4]
    RAMASAMY A, HILL A M, HEPPER A E, et al. Blast mines: physics, injury mechanisms and vehicle protection [J]. Journal of the Royal Army Medical Corps, 2009, 155(4): 258–264. DOI: 10.1136/jramc-155-04-06.
    [5]
    SUN G, ZHANG J, LI S, et al. Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading [J]. Thin Walled Structures, 2019, 142: 499–515. DOI: 10.1016/j.tws.2019.04.029.
    [6]
    李明星, 王显会, 周云波, 等. 基于神经网络的车辆抗冲击防护组件优化 [J]. 爆炸与冲击, 2020, 40(2): 024203. DOI: 10.11883/bzycj-2019-0055.

    LI M X, WANG X H, ZHOU Y B, et al. Research on optimization of vehicle anti-shock protection components based on neural network [J]. Explosion and Shock Waves, 2020, 40(2): 024203. DOI: 10.11883/bzycj-2019-0055.
    [7]
    IMBALZANO G, LINFORTH S, NGO T, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs [J]. Composite Structures, 2018, 183(1): 242–261. DOI: 10.1016/j.compstruct.2017.03.018.
    [8]
    陈震. 某SUV车架多目标拓扑优化设计[D]. 合肥: 合肥工业大学, 2014.
    [9]
    聂昕, 黄鹏冲, 陈涛, 等. 基于耐撞性拓扑优化的汽车关键安全件设计 [J]. 中国机械工程, 2013(23): 140–145. DOI: 10.3969/j.issn.1004-132X.2013.23.028.

    NIE X, HUANG P C, CHEN T, et al. Topology optimization of automotive key safety component design based on crashworthiness [J]. China Mechanical Engineering, 2013(23): 140–145. DOI: 10.3969/j.issn.1004-132X.2013.23.028.
    [10]
    高云凯, 张玉婷, 方剑光. 基于混合元胞自动机的铝合金保险杠横梁设计 [J]. 同济大学学报(自然科学版), 2014, 43(3): 0456–0461. DOI: 10.11908/j.issn.0253-374x.2015.03.021.

    GAO Y K, ZHANG Y T, FANG J G. Design of aluminum bumper beam based on hybrid cellular automata [J]. Journal of Tongji University (Natural Science), 2014, 43(3): 0456–0461. DOI: 10.11908/j.issn.0253-374x.2015.03.021.
    [11]
    DUDDECK F, HUNKELER S, LOZANO P, et al. Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata [J]. Structural & Multidisciplinary Optimization, 2016, 54(3): 415–428. DOI: 10.1007/s00158-016-1445-y.
    [12]
    GOETZ J, TAN H, RENAUD J E, et al. Two-material optimization of plate armour for blast mitigation using hybrid cellular automata [J]. Engineering Optimization, 2012, 44(8): 985–1005. DOI: 10.1080/0305215x.2011.624182.
    [13]
    NATO. Protection levels for occupants of logistic and light armored vehicles: NSA/0533- LAND/4569 [S]. Brussels: NATO, 2004.
    [14]
    王春林, 胡蓓蓓, 冯一鸣, 等. 基于径向基神经网络与粒子群算法的双叶片泵多目标优化 [J]. 农业工程学报, 2019, 35(2): 25–32. DOI: 10.11975/j.issn.1002-6819.2019.02.004.

    WANG C L, HU B B, FENG Y M, et al. Multi-objective optimization of double vane pump based on radial basis neural network and particle swarm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 25–32. DOI: 10.11975/j.issn.1002-6819.2019.02.004.
    [15]
    PATEL N M, KANG B, RENAUD J E, et al. Crashworthiness design using topology optimization [J]. Journal of Mechanical Design, 2009, 131(6): 061013–1-061013-12. DOI: 10.1115/1.3116256.
    [16]
    张颂安. 小型轻量化电动汽车正面碰撞响应及结构优化[D]. 北京: 清华大学, 2016.
    [17]
    甘宁. 基于耐撞性和刚度车辆端部底架的拓扑概念设计[D]. 长沙: 中南大学, 2014.
    [18]
    刘丰嘉. 机车车辆耐撞性仿真与端部结构拓扑优化设计[D]. 成都: 西南交通大学, 2018.
    [19]
    伍素珍, 郑刚, 李光耀, 等. 汽车车身结构安全部件材料匹配优化设计 [J]. 锻压技术, 2015, 40(11): 85–93. DOI: 10.13330/j.issn.1000-3940.2015.11.018.

    WU S Z, ZHENG G, LI G Y, et al. Optimization design of material matching for auto-body safety components [J]. Forging & Stamping Technology, 2015, 40(11): 85–93. DOI: 10.13330/j.issn.1000-3940.2015.11.018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Article Metrics

    Article views (621) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return