Citation: | ZHANG Yanwei, XU Jingde, HU Yang, TIAN Siyu, FENG Ruochen, QIN Hansheng. Experimental study on incentive effect of flexible obstacle on methane-air explosion wave[J]. Explosion And Shock Waves, 2021, 41(5): 055402. doi: 10.11883/bzycj-2020-0144 |
[1] |
林柏泉, 周世宁, 张仁贵. 障碍物对瓦斯爆炸过程中火焰和爆炸波的影响 [J]. 中国矿业大学学报, 1999, 28(2): 104–107. DOI: 10.3321/j.issn: 1000-1964.1999.02.002.
LIN B Q, ZHOU S N, ZHANG R G. Influence of barriers on flame transmission and explosion wave in gas explosion [J]. Journal of China University of Mining & Technology, 1999, 28(2): 104–107. DOI: 10.3321/j.issn: 1000-1964.1999.02.002.
|
[2] |
何学秋, 杨艺, 王恩元, 等. 障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究 [J]. 煤炭学报, 2004, 29(2): 186–189. DOI: 10.3321/j.issn: 0253-9993.2004.02.014.
HE X Q, YANG Y, WANG E Y, et al. Effects of obstacle on premixed flame microstructure and flame propagation in methane/air explosion [J]. Journal of China Coal Society, 2004, 29(2): 186–189. DOI: 10.3321/j.issn: 0253-9993.2004.02.014.
|
[3] |
徐景德, 张莉聪, 黎体发, 等. 煤矿瓦斯爆炸事故中矿车激励效应的数值模拟 [J]. 爆炸与冲击, 2012, 32(1): 47–50. DOI: 10.11883/1001-1455(2012)01-0047-04.
XU J D, ZHANG L C, LI T F, et al. A numerical simulation of stimulating effect of tramcars during the methane explosion propagation [J]. Explosion and Shock Waves, 2012, 32(1): 47–50. DOI: 10.11883/1001-1455(2012)01-0047-04.
|
[4] |
徐景德, 黎体发, 张莉聪, 等. 瓦斯爆炸传播过程中矿车激励效应的实验研究 [J]. 中国安全生产科学技术, 2011, 7(2): 5–8. DOI: 10.3969/j.issn.1673-193X.2011.02.001.
XU J D, LI T F, ZHANG L C, et al. Experiment study of inspirit affection by the tramcar during the methane explosion propagation [J]. Journal of Safety Science and Technology, 2011, 7(2): 5–8. DOI: 10.3969/j.issn.1673-193X.2011.02.001.
|
[5] |
徐景德. 矿井瓦斯爆炸冲击波传播规律及影响因素的研究[D]. 北京: 中国矿业大学(北京), 2003: 14−19.
|
[6] |
景国勋, 吴昱楼, 郭绍帅, 等. 障碍物对瓦斯煤尘爆炸火焰传播规律的影响 [J]. 中国安全生产科学技术, 2019, 15(9): 99–104. DOI: 10.11731/j.issn.1673-193x.2019.09.016.
JING G X, WU Y L, GUO S S, et al. Influence of obstacle on flame propagation laws of gas and coal dust explosion [J]. Journal of Safety Science and Technology, 2019, 15(9): 99–104. DOI: 10.11731/j.issn.1673-193x.2019.09.016.
|
[7] |
余明高, 纪文涛, 温小萍, 等. 交错障碍物对瓦斯爆炸影响的实验研究 [J]. 中国矿业大学学报, 2013, 42(3): 349–354. DOI: 10.13247/j.cnki.jcumt.2013.03.004.
YU M G, JI W T, WEN X P, et al. Experimental study of the influence of staggered obstacles on gas explosion [J]. Journal of China University of Mining and Technology, 2013, 42(3): 349–354. DOI: 10.13247/j.cnki.jcumt.2013.03.004.
|
[8] |
WANG C, CUI Y Y, MEBARKI A, et al. Effect of a tilted obstacle on the flame propagation of gas explosion in case of low initial pressure [J]. Combustion Science and Technology, 2020. DOI: 10.1080/00102202.2020.1740689.
|
[9] |
WANG C, MA T B, LU J. Influence of obstacle disturbance in a duct on explosion characteristics of coal gas [J]. Science China Physics, Mechanics and Astronomy, 2010, 53(2): 269–278. DOI: 10.1007/s11433-009-0270-3.
|
[10] |
MASRI A R, IBRAHIM S S, NEHZAT N, et al. Experimental study of premixed flame propagation over various solid obstructions [J]. Experimental Thermal and Fluid Science, 2000, 21(1−3): 109–116. DOI: 10.1016/S0894-1777(99)00060-6.
|
[11] |
TEODORCZYK A. Scale effects on hydrogen-air fast deflagrations and detonations in small obstructed channels [J]. Journal of Loss Prevention in the Process Industries, 2007, 21(2): 147–153. DOI: 10.1016/j.jlp.2007.06.017.
|
[12] |
BAKKE J R, VAN WINGERDEN K, HOORELBEKE P, et al. A study on the effect of trees on gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 878–884. DOI: 10.1016/j.jlp.2010.08.007.
|
[13] |
赵衡阳. 气体和粉尘爆炸原理[M]. 北京: 北京理工大学出版社, 1996: 13−14.
|
[14] |
归明月, 范宝春, 于陆军, 等. 入射和反射激波与火焰相互作用的实验和数值显示 [J]. 自然科学进展, 2007, 17(6): 831–836. DOI: 10.3321/j.issn: 1002-008X.2007.06.019.
|
[15] |
范宝春, 冮强, 董刚, 等. 激波与火焰的相互作用过程 [J]. 爆炸与冲击, 2003, 23(6): 488–492.
FAN B C, JIANG Q, DONG G, et al. The time evolution of shock-flame interaction [J]. Explosion and Shock Waves, 2003, 23(6): 488–492.
|
[16] |
蒋华. 激波诱导预混火焰界面RM不稳定性的数值研究[D]. 南京: 南京理工大学, 2017: 21−22.
JIANG H. Numerical study of RM instability on a perturbed interface of premixed flame induced by shock waves[D]. Nanjing: Nanjing University of Science Technology, 2017: 21−22.
|
[17] |
CICCARELLI G, JOHANSEN C T, PARRAVANI M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel [J]. Combustion and Flame, 2010, 157(11): 2125–2136. DOI: 10.1016/j.combustflame.2010.05.003.
|
[18] |
GAMEZO V N, OGAWA T, ORAN E S. Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2463–2471. DOI: 10.1016/j.proci.2006.07.220.
|
[19] |
史晓亮. 中尺度瓦斯爆炸试验管道测试系统调试与分析[D]. 廊坊: 华北科技学院, 2016: 24−26.
SHI X L. Commissioning and analysis of the test system for the gas explosion shock tube[D]. Langfang: North China Institute of Science and Technology, 2016: 24−26.
|
[20] |
赖芳芳. 电火源引爆瓦斯的规律和特征研究[D]. 廊坊: 华北科技学院, 2015: 31−33.
LAI F F. Study on the law and characteristics of gas explosion ignited by electric fire source[D]. Langfang: North China Institute of Science and Technology, 2015: 31−33.
|
[21] |
陈强. 激波管流动的理论和实验技术[M]. 合肥: 中国科技大学五系, 1979: 59−61.
|
[22] |
林柏泉. 煤矿瓦斯爆炸机理及防治技术[M]. 徐州: 中国矿业大学出版社, 2012: 124−126.
|
[23] |
何惠琴. 反射激波作用下的Richtmyer-Meshkov不稳定性的相关研究[D]. 合肥: 中国科学技术大学, 2015: 3.
HE H Q. Research on the Richtmyer-Meshkov instability under reshock[D]. Hefei: University of Science and Technology of China, 2015: 3.
|