Volume 41 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
WANG Ganghua, XIE Long, ZHAO Hailong, KAN Mingxian, XIAO Bo, HE Yong, SONG Shengyi. Simulational analysis on electromagnetic field evolution in launching process of a series enhanced electromagnetic railgun based on the moving-window method[J]. Explosion And Shock Waves, 2021, 41(6): 064201. doi: 10.11883/bzycj-2020-0156
Citation: WANG Ganghua, XIE Long, ZHAO Hailong, KAN Mingxian, XIAO Bo, HE Yong, SONG Shengyi. Simulational analysis on electromagnetic field evolution in launching process of a series enhanced electromagnetic railgun based on the moving-window method[J]. Explosion And Shock Waves, 2021, 41(6): 064201. doi: 10.11883/bzycj-2020-0156

Simulational analysis on electromagnetic field evolution in launching process of a series enhanced electromagnetic railgun based on the moving-window method

doi: 10.11883/bzycj-2020-0156
  • Received Date: 2020-05-20
  • Rev Recd Date: 2020-09-28
  • Available Online: 2021-04-21
  • Publish Date: 2021-06-05
  • It is very important to simulate and analyze the evolution of the electromagnetic field on the armature/rail in the electromagnetic emission process for optimizing and improving the design of the rail and armature, which is the main basis for controlling the temperature rise of the rail, armature and armature transition. Series enhanced trajectory design is an effective way to improve projectile initial velocity and launch efficiency under the condition of inherent energy storage. In this design, the magnetic field strength on the armature is increased through the series current of the circuit, thus improving the emission ability. A mathematical and physical model is established for the series enhanced orbit. The main control equations of the Railgun3D program are briefly introduced in this paper. The moving window FE/BE Hybrid simulation method is adopted to simulate the series reinforced railgun. This method can make more efficient use of computer resources and focus the simulation on the vicinity of the rail/armature interface. The evolution process of the electromagnetic field of a complex rail/armature under trapezoidal driving current is analyzed in detail. Due to the existence of the enhanced orbit, the driving current produces a large magnetic field on the enhanced orbit. Due to electromagnetic induction, the corresponding induced current will be generated on the inner orbit, that is, there are significant magnetic field and current distribution on the orbit at one end of the muzzle. The magnitude of the induced current depends on the change rate of the driving current. The distribution of current direction near the armature at several times is given, and the evolution process of the current vortex structure is observed. In the current drop section, the results of current reversal on the surface behind the armature are given. It is pointed out that this effect may be an important factor leading to insufficient contact stress between the armature and the track, and even the occurrence of armature transition. Through the current density nephogram on the central symmetry plane, the simulation results show the competition mechanism between magnetic diffusion and velocity skin effect in the whole process.
  • loading
  • [1]
    KULKARNI A S, THOMAS M J. Comparison between the performance analysis of passive compulsators with slotted and slotless armature windings driving a railgun [J]. International Journal of Emerging Electric Power Systems, 2019, 20(6): 20190132A. DOI: 10.1515/ijeeps-2019-0132.
    [2]
    MARSHALL R A, WANG Y. Railguns: their science and technology [M]. Beijing: China Machine Press, 2004.
    [3]
    KUMAR V P, SWARUP S, RAJPUT S, et al. Design and development of 4-MJ capacitor bank-based pulsed power system for electromagnetic launcher [J]. IEEE Transactions on Plasma Science, 2019, 47(3): 1681–1689. DOI: 10.1109/TPS.2019.2896013.
    [4]
    MCNAB I R. Electromagnetic launch to space [J]. Journal of the British Interplanetary Society, 2007, 60: 54–62.
    [5]
    ZHANG H, DAI K R, YIN Q. Ammunition reliability against the harsh environments during the launch of an electromagnetic gun: a review [J]. IEEE Access, 2019, 7: 45322–45339. DOI: 10.1109/ACCESS.2019.2907735.
    [6]
    PONIAEV S A, REZNIKOV B I, KURAKIN R O, et al. Prospects of use of electromagnetic railgun as plasma thruster for spacecrafts [J]. Acta Astronautica, 2018, 150: 92–96. DOI: 10.1016/j.actaastro.2017.12.035.
    [7]
    MCNAB I R, CRAWFORD M T, SATAPATHY S S, et al. IAT armature development [J]. IEEE Transactions on Plasma Science, 2011, 39(1): 442–451. DOI: 10.1109/TPS.2010.2082568.
    [8]
    GUO W, ZHANG T, LI J X, et al. Design and testing a novel armature on railgun [J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1119–1124. DOI: 10.1109/TPS.2015.2393365.
    [9]
    PROULX G A. Railgun with steel barrel sections and thermal management system [J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1642–1646. DOI: 10.1109/TPS.2015.2411259.
    [10]
    STONKUS R, RAČKAUSKAS J, SCHNEIDER M, et al. Structural mechanics of railguns with open barrels and elastic supports: the influence of multishot operation [J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1510–1515. DOI: 10.1109/TPS.2014.2387791.
    [11]
    王刚华, 谢龙, 王强, 等. 电磁轨道炮电磁力学分析 [J]. 火炮发射与控制学报, 2011(1): 69–71, 76. DOI: 10.3969/j.issn.1673-6524.2011.01.018.

    WANG G H, XIE L, WANG Q, et al. Analysis on electromagnetic mechanics in electromagnetic railgun [J]. Journal of Gun Launch and Control, 2011(1): 69–71, 76. DOI: 10.3969/j.issn.1673-6524.2011.01.018.
    [12]
    WANG G H, XIE L, HE Y, et al. Moving mesh FE/BE hybrid simulation of electromagnetic field evolution for railgun [J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1424–1428. DOI: 10.1109/TPS.2016.2584981.
    [13]
    LV Q A, LI Z Y, LEI B, et al. Primary structural design and optimal armature simulation for a practical electromagnetic launcher [J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1403–1409. DOI: 10.1109/TPS.2013.2251679.
    [14]
    邢彦昌, 吕庆敖, 雷彬, 等. 多匝串联并列轨道炮U形电枢接触界面熔蚀规律分析 [J]. 兵工学报, 2018, 39(11): 2081–2091. DOI: 10.3969/j.issn.1000-1093.2018.11.001.

    XING Y C, LYU Q A, LEI B, et al. Analysis of melting erosion characteristic on the contact interface between u-shaped armature and rails for multiturn serial-parallel railgun [J]. Acta Armamentarii, 2018, 39(11): 2081–2091. DOI: 10.3969/j.issn.1000-1093.2018.11.001.
    [15]
    徐蓉, 袁伟群, 成文凭, 等. 增强型电磁轨道发射器的电磁场仿真分析 [J]. 高电压技术, 2014, 40(4): 1065–1070. DOI: 10.13336/j.1003-6520.hve.2014.04.015.

    XU R, YUAN W Q, CHENG W P, et al. Simulation and analysis of electromagnetic field for augmented railgun [J]. High Voltage Engineering, 2014, 40(4): 1065–1070. DOI: 10.13336/j.1003-6520.hve.2014.04.015.
    [16]
    任先进, 张春. 静止条件下电磁轨道炮膛内磁场环境仿真分析 [J]. 火控雷达技术, 2018, 47(2): 82–84; 90. DOI: 10.3969/j.issn.1008-8652.2018.02.018.

    REN X J, ZHANG C. Simulation analysis of in-bore magnetic field environment of electromagnetic rail-gun at static condition [J]. Fire Control Radar Technology, 2018, 47(2): 82–84; 90. DOI: 10.3969/j.issn.1008-8652.2018.02.018.
    [17]
    王志恒, 万敏, 李小将. 轨道炮电枢电动力转捩形成机理与仿真分析 [J]. 系统仿真学报, 2018, 30(3): 1090–1095. DOI: 10.16182/j.issn1004731x.joss.201803040.

    WANG Z H, WAN M, LI X J. Formation mechanism and simulation analysis of railgun armature electromagnetic transition [J]. Journal of System Simulation, 2018, 30(3): 1090–1095. DOI: 10.16182/j.issn1004731x.joss.201803040.
    [18]
    饶寿期. 有限元法和边界元法基础[M]. 北京: 北京航空航天大学出版社, 1990.
    [19]
    周平, 徐金平. 求解电磁场有限元边界元方程组的有效方法 [J]. 东南大学学报(自然科学版), 2005, 35(3): 343–346. DOI: 10.3321/j.issn:1001-0505.2005.03.005.

    ZHOU P, XU J P. Method for solving linear equations of hybrid finite element-boundary element method for EM problems [J]. Journal of Southeast University (Natural Science Edition), 2005, 35(3): 343–346. DOI: 10.3321/j.issn:1001-0505.2005.03.005.
    [20]
    金伟其, 周立伟, 倪国强, 等. 一种计算轴对称磁场的边界元-有限元混合法的研究 [J]. 北京理工大学学报, 1991, 11(4): 37–44.

    JIN W Q, ZHOU L W, NI G Q, et al. A combined boundary element-finite element method for computing the rotational symmetrical magnetic field [J]. Transactions of Beijing Institute of Technology, 1991, 11(4): 37–44.
    [21]
    LIU J F, XI X L, WAN G B, et al. Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method [J]. IEEE Transactions on Plasma Science, 2011, 39(3): 852–855. DOI: 10.1109/TPS.2010.2098890.
    [22]
    WANG Z J, CHEN L X, XIA S G, et al. Experiments and analysis of downslope low-voltage transition in C-type solid armature rail gun [J]. IEEE Transactions on Plasma Science, 2020, 48(7): 2601–2607. DOI: 10.1109/TPS.2020.2999396.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (402) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return