Citation: | WANG Ganghua, XIE Long, ZHAO Hailong, KAN Mingxian, XIAO Bo, HE Yong, SONG Shengyi. Simulational analysis on electromagnetic field evolution in launching process of a series enhanced electromagnetic railgun based on the moving-window method[J]. Explosion And Shock Waves, 2021, 41(6): 064201. doi: 10.11883/bzycj-2020-0156 |
[1] |
KULKARNI A S, THOMAS M J. Comparison between the performance analysis of passive compulsators with slotted and slotless armature windings driving a railgun [J]. International Journal of Emerging Electric Power Systems, 2019, 20(6): 20190132A. DOI: 10.1515/ijeeps-2019-0132.
|
[2] |
MARSHALL R A, WANG Y. Railguns: their science and technology [M]. Beijing: China Machine Press, 2004.
|
[3] |
KUMAR V P, SWARUP S, RAJPUT S, et al. Design and development of 4-MJ capacitor bank-based pulsed power system for electromagnetic launcher [J]. IEEE Transactions on Plasma Science, 2019, 47(3): 1681–1689. DOI: 10.1109/TPS.2019.2896013.
|
[4] |
MCNAB I R. Electromagnetic launch to space [J]. Journal of the British Interplanetary Society, 2007, 60: 54–62.
|
[5] |
ZHANG H, DAI K R, YIN Q. Ammunition reliability against the harsh environments during the launch of an electromagnetic gun: a review [J]. IEEE Access, 2019, 7: 45322–45339. DOI: 10.1109/ACCESS.2019.2907735.
|
[6] |
PONIAEV S A, REZNIKOV B I, KURAKIN R O, et al. Prospects of use of electromagnetic railgun as plasma thruster for spacecrafts [J]. Acta Astronautica, 2018, 150: 92–96. DOI: 10.1016/j.actaastro.2017.12.035.
|
[7] |
MCNAB I R, CRAWFORD M T, SATAPATHY S S, et al. IAT armature development [J]. IEEE Transactions on Plasma Science, 2011, 39(1): 442–451. DOI: 10.1109/TPS.2010.2082568.
|
[8] |
GUO W, ZHANG T, LI J X, et al. Design and testing a novel armature on railgun [J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1119–1124. DOI: 10.1109/TPS.2015.2393365.
|
[9] |
PROULX G A. Railgun with steel barrel sections and thermal management system [J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1642–1646. DOI: 10.1109/TPS.2015.2411259.
|
[10] |
STONKUS R, RAČKAUSKAS J, SCHNEIDER M, et al. Structural mechanics of railguns with open barrels and elastic supports: the influence of multishot operation [J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1510–1515. DOI: 10.1109/TPS.2014.2387791.
|
[11] |
王刚华, 谢龙, 王强, 等. 电磁轨道炮电磁力学分析 [J]. 火炮发射与控制学报, 2011(1): 69–71, 76. DOI: 10.3969/j.issn.1673-6524.2011.01.018.
WANG G H, XIE L, WANG Q, et al. Analysis on electromagnetic mechanics in electromagnetic railgun [J]. Journal of Gun Launch and Control, 2011(1): 69–71, 76. DOI: 10.3969/j.issn.1673-6524.2011.01.018.
|
[12] |
WANG G H, XIE L, HE Y, et al. Moving mesh FE/BE hybrid simulation of electromagnetic field evolution for railgun [J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1424–1428. DOI: 10.1109/TPS.2016.2584981.
|
[13] |
LV Q A, LI Z Y, LEI B, et al. Primary structural design and optimal armature simulation for a practical electromagnetic launcher [J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1403–1409. DOI: 10.1109/TPS.2013.2251679.
|
[14] |
邢彦昌, 吕庆敖, 雷彬, 等. 多匝串联并列轨道炮U形电枢接触界面熔蚀规律分析 [J]. 兵工学报, 2018, 39(11): 2081–2091. DOI: 10.3969/j.issn.1000-1093.2018.11.001.
XING Y C, LYU Q A, LEI B, et al. Analysis of melting erosion characteristic on the contact interface between u-shaped armature and rails for multiturn serial-parallel railgun [J]. Acta Armamentarii, 2018, 39(11): 2081–2091. DOI: 10.3969/j.issn.1000-1093.2018.11.001.
|
[15] |
徐蓉, 袁伟群, 成文凭, 等. 增强型电磁轨道发射器的电磁场仿真分析 [J]. 高电压技术, 2014, 40(4): 1065–1070. DOI: 10.13336/j.1003-6520.hve.2014.04.015.
XU R, YUAN W Q, CHENG W P, et al. Simulation and analysis of electromagnetic field for augmented railgun [J]. High Voltage Engineering, 2014, 40(4): 1065–1070. DOI: 10.13336/j.1003-6520.hve.2014.04.015.
|
[16] |
任先进, 张春. 静止条件下电磁轨道炮膛内磁场环境仿真分析 [J]. 火控雷达技术, 2018, 47(2): 82–84; 90. DOI: 10.3969/j.issn.1008-8652.2018.02.018.
REN X J, ZHANG C. Simulation analysis of in-bore magnetic field environment of electromagnetic rail-gun at static condition [J]. Fire Control Radar Technology, 2018, 47(2): 82–84; 90. DOI: 10.3969/j.issn.1008-8652.2018.02.018.
|
[17] |
王志恒, 万敏, 李小将. 轨道炮电枢电动力转捩形成机理与仿真分析 [J]. 系统仿真学报, 2018, 30(3): 1090–1095. DOI: 10.16182/j.issn1004731x.joss.201803040.
WANG Z H, WAN M, LI X J. Formation mechanism and simulation analysis of railgun armature electromagnetic transition [J]. Journal of System Simulation, 2018, 30(3): 1090–1095. DOI: 10.16182/j.issn1004731x.joss.201803040.
|
[18] |
饶寿期. 有限元法和边界元法基础[M]. 北京: 北京航空航天大学出版社, 1990.
|
[19] |
周平, 徐金平. 求解电磁场有限元边界元方程组的有效方法 [J]. 东南大学学报(自然科学版), 2005, 35(3): 343–346. DOI: 10.3321/j.issn:1001-0505.2005.03.005.
ZHOU P, XU J P. Method for solving linear equations of hybrid finite element-boundary element method for EM problems [J]. Journal of Southeast University (Natural Science Edition), 2005, 35(3): 343–346. DOI: 10.3321/j.issn:1001-0505.2005.03.005.
|
[20] |
金伟其, 周立伟, 倪国强, 等. 一种计算轴对称磁场的边界元-有限元混合法的研究 [J]. 北京理工大学学报, 1991, 11(4): 37–44.
JIN W Q, ZHOU L W, NI G Q, et al. A combined boundary element-finite element method for computing the rotational symmetrical magnetic field [J]. Transactions of Beijing Institute of Technology, 1991, 11(4): 37–44.
|
[21] |
LIU J F, XI X L, WAN G B, et al. Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method [J]. IEEE Transactions on Plasma Science, 2011, 39(3): 852–855. DOI: 10.1109/TPS.2010.2098890.
|
[22] |
WANG Z J, CHEN L X, XIA S G, et al. Experiments and analysis of downslope low-voltage transition in C-type solid armature rail gun [J]. IEEE Transactions on Plasma Science, 2020, 48(7): 2601–2607. DOI: 10.1109/TPS.2020.2999396.
|