LI Jiahao, XU Bian, ZHENG Yuxuan, ZHOU Fenghua. Constant strain-rate loading of liquid-driving expanding ring[J]. Explosion And Shock Waves, 2023, 43(2): 024101. doi: 10.11883/bzycj-2022-0160
Citation:
LIU Junjie, LIU Kun, CONG Shuguang, DONG Haibo, XIA Jinsong. Experimental study on dynamic response of an anti-ice hull structurewith square groove longitudinals under ice impact[J]. Explosion And Shock Waves, 2021, 41(6): 065101. doi: 10.11883/bzycj-2020-0168
LI Jiahao, XU Bian, ZHENG Yuxuan, ZHOU Fenghua. Constant strain-rate loading of liquid-driving expanding ring[J]. Explosion And Shock Waves, 2023, 43(2): 024101. doi: 10.11883/bzycj-2022-0160
Citation:
LIU Junjie, LIU Kun, CONG Shuguang, DONG Haibo, XIA Jinsong. Experimental study on dynamic response of an anti-ice hull structurewith square groove longitudinals under ice impact[J]. Explosion And Shock Waves, 2021, 41(6): 065101. doi: 10.11883/bzycj-2020-0168
In this work, in order to reduce hull structural damage caused by ice impact, a new type of square groove longitudinal anti-ice structure is used in the shoulder structure of a hull in ice belt. Using a falling weight impact test system, the structural dynamic responses of anti-ice and prototype stiffened plates under the same ice impact case were tested and the impacting processes were simulated by the MSC.Dytran software. The results show that under the same impact conditions, the impact force produced by the anti-ice structure is slightly higher than that by the prototype one, and the maximum depression depth is smaller than that of the prototype one. According to the structural damage degree of the hull shell plates and their protection function to the hull internal components and equipment, the new structure has a certain anti-ice effect compared with the prototype structure. The results of the present study can provide a reference for the design of the anti-ice structures of ice-going ships or icebreakers.
LIU Z H, AMDAHL J, LØSET S. Integrated numerical analysis of an iceberg collision with a foreship structure [J]. Marine Structures, 2011, 24(4): 377–395. DOI: 10.1016/j.marstruc.2011.05.004.
[2]
INCE S T, KUMAR A, PARK D K, et al. An advanced technology for structural crashworthiness analysis of a ship colliding with an ice-ridge: numerical modelling and experiments [J]. International Journal of Impact Engineering, 2017, 110: 112–122. DOI: 10.1016/j.ijimpeng.2017.02.014.
[3]
KIM J H, KIM Y, KIM H S, et al. Numerical simulation of ice impacts on ship hulls in broken ice fields [J]. Ocean Engineering, 2019, 182: 211–221. DOI: 10.1016/j.oceaneng.2019.04.040.
ZHANG J, WAN Z Q, CHEN C. Research on structure dynamic response of bulbous bow in ship-ice collision load [J]. Journal of Ship Mechanics, 2014, 18(1−2): 106–114. DOI: 10.3969/j.issn.1007-7294.2014.h1.014.
ZHANG J, WANG F C, LIU H D, et al. Experimental study on collision of hull plate model and ice in water medium [J]. Journal of Ship Mechanics, 2020, 24(4): 492–500. DOI: 10.3969/j.issn.1007-7294.2020.04.009.
LI D, YANG C P, DU Z Y. Anti-ice impact side structure design of LNG ship [J]. Marine Equipment/Materials and Marketing, 2019(11): 17–19. DOI: 10.19727/j.cnki.cbwzysc.2019.11.001.