Citation: | WANG Wei, YANG Jianchao, WANG Jianhui, GAO Weiliang, WANG Xing. Experimental research on anti-contact explosion of POZD coated square reinforced concrete slab[J]. Explosion And Shock Waves, 2020, 40(12): 121402. doi: 10.11883/bzycj-2020-0180 |
[1] |
LI Z X, DU H, BAO C X. Review of current researches on blast load effects of building structures in China [J]. Transactions of Tianjin University, 2006, 12(S): 35–41.
|
[2] |
王明洋, 张胜民, 国胜兵. 接触爆炸作用下钢板−钢纤维混凝土遮弹层设计方法:Ⅰ [J]. 爆炸与冲击, 2002, 22(1): 40–45.
WANG M Y, ZHANG S M, GUO S B. Design method of steel fiber concrete shelter plate under contact detonation: Ⅰ [J]. Explosion and Shock Waves, 2002, 22(1): 40–45.
|
[3] |
王明洋, 钱七虎, 赵跃堂. 接触爆炸作用下钢板−钢纤维钢筋混凝土遮弹层设计方法:Ⅱ [J]. 爆炸与冲击, 2002, 22(2): 163–l68.
WANG M Y, QIAN Q H, ZHAO Y T. Design method of steel fiber concrete shelter plate under contact detonation: Ⅱ [J]. Explosion and Shock Waves, 2002, 22(2): 163–l68.
|
[4] |
陈万祥, 严少华. CFRP加固钢筋混凝土梁抗爆性能试验研究 [J]. 土木工程学报, 2010, 43(5): 1–12. DOI: 10.15951/j.tmgcxb.2010.05.014.
CHEN W X, YAN S H. Experimental study of RC beams strengthened with CFRP under blast loading [J]. China Civil Engineering Journal, 2010, 43(5): 1–12. DOI: 10.15951/j.tmgcxb.2010.05.014.
|
[5] |
柳景春, 方秦. 爆炸荷载作用下内衬钢板的混凝土组合结构防震塌的工程计算方法 [J]. 防护工程, 2008, 38(4): 31–34.
LIU J C, FANG Q. The engineering calculation method of steel-backed concrete composite structures for anti-scabbing under blast loading [J]. Protective Engineering, 2008, 38(4): 31–34.
|
[6] |
柳锦春, 方秦, 张亚栋, 等. 爆炸荷载作用下内衬钢板的混凝土组合结构的局部效应分析 [J]. 兵工学报, 2004, 25(6): 773–776. DOI: 10.3321/j.issn:1000-1093.2004.06.027.
LIU J C, FANG Q, ZHANG Y D, et al. Analysis of local effects on steel-backed concrete composite structures under blast loading [J]. Acta Armamentarii, 2004, 25(6): 773–776. DOI: 10.3321/j.issn:1000-1093.2004.06.027.
|
[7] |
李志成, 艾德武, 严少华. 碳纤维布加固混凝土试块抗侵彻试验研究 [J]. 防护工程, 2002(1): 42–49.
LI Z C, AI D W, YAN S H. Experimental study on penetration resistance of concrete block strengthened with CFRP [J]. Protective Engineering, 2002(1): 42–49.
|
[8] |
韩国建, 程国亮, 杨进勇, 等. 双向余弦三维波纹钢板-混凝土复合结构抗震塌性能研究 [J]. 防护工程, 2013, 35(6): 13–17.
HAN G J, CHENG G L, YANG J Y, et al. Research on anti-collapse ability of bidirectional cosine three-dimensional corrugated steel place-reinforced concrete composite structure [J]. Protective Engineering, 2013, 35(6): 13–17.
|
[9] |
袁建虎, 唐建, 吕振坚, 等. 钢丝网高强混凝土抗爆性能试验研究 [J]. 兵工学报, 2012, 33(3): 373–378.
YUAN J H, TANG J, LU Z J, et al. Experimental investigation on anti-explosion performance of steel-wire-net reinforced concretes [J]. Acta Armamentarii, 2012, 33(3): 373–378.
|
[10] |
陈万祥, 卢红标, 候小伟, 等. 高强钢筋加强混凝土板抗爆性能试验研究 [J]. 振动与冲击, 2015, 34(10): 135–141. DOI: 10.13465/j.cnki.jvs.2015.10.023.
CHEN W X, LU H B, HOU X W, et al. Tests for anti-blast performance of concrete slabs with high-strength reinforcements under blast loading [J]. Journal of Vibration and Shock, 2015, 34(10): 135–141. DOI: 10.13465/j.cnki.jvs.2015.10.023.
|
[11] |
侯小伟, 卢红标, 陈万祥, 等. 高强钢筋混凝土板抗接触爆炸破坏形态分析 [J]. 武汉理工大学学报, 2013, 35(9): 96–100. DOI: 10.3963/j.issn.1671-4431.2013.09.019.
HOU X W, LU H B, CHEN W X, et al. Analysis on the anti-contact explosion failure patterns of high strength RC slabs [J]. Journal of Wuhan University of Technology, 2013, 35(9): 96–100. DOI: 10.3963/j.issn.1671-4431.2013.09.019.
|
[12] |
董新龙, 洪志权, 高培正, 等. 混凝土及钢纤维混凝土板爆炸破坏研究 [J]. 兵工学报, 2009, 30(S2): 280–283.
DONG X L, HONG Z Q, GAO P Z, et al. Study on collapse of common and steel fiber reinforced concrete slabs subjected to contact detonation [J]. Acta Armamentarii, 2009, 30(S2): 280–283.
|
[13] |
范新, 章克凌, 王明洋, 等. 钢纤维喷射混凝土支护抗常规爆炸震塌能力研究 [J]. 岩石力学与工程学报, 2006, 25(7): 1437–1442. DOI: 10.3321/j.issn:1000-6915.2006.07.021.
FAN X, ZHANG K L, WANG M Y, et al. Study on spalling resistance performance of steel fiber shotcrete induced by conventional explosion [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1437–1442. DOI: 10.3321/j.issn:1000-6915.2006.07.021.
|
[14] |
LAN S R, LOK T S, HENG L. Composite structural panels subjected to explosive loading [J]. Construction and Building Materials, 2005, 19(5): 387–395. DOI: 10.1016/j.conbuildmat.2004.07.021.
|
[15] |
HUFF W L. Collapse strength of a two way reinforced concrete slab contained within a steel frame structure: ADA012825 [R]. Washington D C: Army Engineer Waterways Experiment Station Vicksburg Miss Defense Civil Preparedness Agency. 1975.
|
[16] |
OHKUBO K, BEPPU M, OHNO T, et al. Experimental study on the effectiveness of fiber sheet reinforcement on the explosive-resistant performance of concrete plates [J]. International Journal of Impact Engineering, 2008, 35(12): 1702–1708. DOI: 10.1016/j.ijimpeng.2008.07.022.
|
[17] |
WU C, OEHLERS D J, REBENTROST M, et al. Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs [J]. Engineering Structures, 2009, 31(9): 2060–2069. DOI: 10.1016/j.engstruct.2009.03.020.
|
[18] |
杨建超, 汪剑辉, 周旺进, 等. 喷涂POZD弹性涂层防护门抗爆性能试验研究 [J]. 防护工程, 2020, 42(1): 7–11.
YANG J C, WANG J H, ZHOU W J, et al. Experimental study on blast resistance performance of blast door with POZD elastic coating [J]. Protective Engineering, 2020, 42(1): 7–11.
|
[19] |
张想柏, 杨秀敏, 陈肇元, 等. 接触爆炸钢筋混凝土板的震塌效应 [J]. 清华大学学报(自然科学版), 2006, 46(6): 765–768. DOI: 10.3321/j.issn:1000-0054.2006.06.004.
ZHANG X B, YANG X M, CHENG Z Y, et al. Explosion spalling of reinforced concrete slabs with contact detonations [J]. Journal of Tsinghua University (Science and Technology), 2006, 46(6): 765–768. DOI: 10.3321/j.issn:1000-0054.2006.06.004.
|
[1] | LI Yong, LUO Hongyu, FENG Xiaowei, HU Yupeng, ZHANG Jun, LI Haitao. Influence of altitude on the propagation of explosion shock waves in a long straight tunnel[J]. Explosion And Shock Waves, 2024, 44(3): 032201. doi: 10.11883/bzycj-2023-0230 |
[2] | LIU Bowen, LONG Renrong, ZHANG Qingming, JU Yuanyuan, ZHONG Xianzhe, WANG Haiyang, LIU Wenjin. Study on the corner overpressure characteristics of concentrated reflected shock wave due to internal blast in cabin[J]. Explosion And Shock Waves, 2023, 43(1): 012201. doi: 10.11883/bzycj-2022-0232 |
[3] | SHAN Renliang, ZHAO Yan, WANG Hailong, DONG Jie, TONG Xiao, LI Zhaolong, WANG Dongsheng. Attenuation of blasting vibration in a railway tunnel[J]. Explosion And Shock Waves, 2022, 42(8): 085201. doi: 10.11883/bzycj-2021-0324 |
[4] | LIU Xiangyu, GONG Min, WU Haojun, AN Di. Determination method of tunnel blasting parameters using electronic detonator under changing condition of free surface[J]. Explosion And Shock Waves, 2021, 41(10): 105202. doi: 10.11883/bzycj-2020-0428 |
[5] | HE Li, ZHONG Dongwang, LI Peng, SONG Kun, SI Jianfeng. Vibration prediction and energy analysis of slope under blasting load in underpass tunnel[J]. Explosion And Shock Waves, 2020, 40(7): 075201. doi: 10.11883/bzycj-2019-0255 |
[6] | CHEN Cai, SHI Quan, YOU Zhifeng, GUO Chiming, GE Hongyu. Similarity law of cylindrical ammunition explosions in air[J]. Explosion And Shock Waves, 2019, 39(9): 092202. doi: 10.11883/bzycj-2018-0255 |
[7] | GONG Min, WU Haojun. High-speed photography image acquisition system in tunnel blasting and parameters study on precisely controlled blasting[J]. Explosion And Shock Waves, 2019, 39(5): 051101. doi: 10.11883/bzycj-2018-0319 |
[8] | LIU Yijia, LU Wenbo, CHEN Ming, YAN Peng. Frequency and duration dependence analysis of structural blasting vibration response[J]. Explosion And Shock Waves, 2019, 39(8): 085203. doi: 10.11883/bzycj-2019-0142 |
[9] | WU Haojun, GONG Min. Calculation and application of hole by hole blasting vibration superposition based on measured delay times of detonators[J]. Explosion And Shock Waves, 2019, 39(2): 025202. doi: 10.11883/bzycj-2017-0415 |
[10] | ZHOU Wenhai, LIANG Rui, YU Jianping, DU Chaofei, WANG Dunfan, LOU Xiaoming. Dimensionless analysis on peak particle vibration velocity induced by slope casting blast[J]. Explosion And Shock Waves, 2019, 39(5): 054201. doi: 10.11883/bzycj-2017-0373 |
[11] | HU Hongwei, FENG Haiyun, CHEN Lang, GU Xiaohui, SONG Pu. Characteristic work capability of non-ideal explosives in concrete[J]. Explosion And Shock Waves, 2018, 38(1): 197-203. doi: 10.11883/bzycj-2016-0123 |
[12] | Li Yucheng, Liu Tianqi, Zhou Xihua. An energy prediction model for coal dust explosion based on dimensional analysis[J]. Explosion And Shock Waves, 2017, 37(3): 566-570. doi: 10.11883/1001-1455(2017)03-0566-05 |
[13] | Tang Enling, Shi Xiaohan, Wang Meng, Wang Di, Xiang Shenghai, Xia Jin, Liu Shuhua, He Liping, Han Yafei. Perforation characteristics of cylindrical shell free beamunder high-speed impact[J]. Explosion And Shock Waves, 2016, 36(1): 121-128. doi: 10.11883/1001-1455(2016)01-0121-08 |
[14] | Song Meili, Li Wenbin, Wang Xiaoming, Feng Jun, Liu Zhilin. Experiments and dimensional analysis ofhigh-speed projectile penetration efficiency[J]. Explosion And Shock Waves, 2016, 36(6): 752-758. doi: 10.11883/1001-1455(2016)06-0752-07 |
[15] | Lou Xiaoming, Zhou Wenhai, Jian Wenbing, Zheng Junjie. Control of delay time characterized by distribution of peak velocity-displacement vibration of millisecond blasting[J]. Explosion And Shock Waves, 2016, 36(6): 839-846. doi: 10.11883/1001-1455(2016)06-0839-08 |
[16] | Li Shun-bo, Yang Jun, Chen Pu, Liu Jie. Experimental study of blasting vibration with precisely-controlled delay time[J]. Explosion And Shock Waves, 2013, 33(5): 513-518. doi: 10.11883/1001-1455(2013)05-0513-06 |
[17] | SHEN Yan-ming, CHEN Jian-qiang. Numericallysimulatingverificationofthecomparabilityrule onhypervelocityimpact[J]. Explosion And Shock Waves, 2011, 31(4): 343-348. doi: 10.11883/1001-1455(2011)04-0343-06 |
[18] | ZHAO Ming-sheng, ZHANG Jian-hua, YI Chang-ping. PrimaryinvestigationontheapplicationofICA toblastingvibrationsignalseparation[J]. Explosion And Shock Waves, 2011, 31(2): 191-195. doi: 10.11883/1001-1455(2011)02-0191-05 |
[19] | PANG Wei-bin, LI Yong-chi, HE Xiang. The regularity of arrival time in T-shaped tunnel for shock wave due to explosions from high explosive charges[J]. Explosion And Shock Waves, 2007, 27(1): 63-67. doi: 10.11883/1001-1455(2007)01-0063-05 |
[20] | ZHANG Dan, DUAN Heng-jian, ZENG Fu-hong. Experimental study on subordinate blasting seismic intensity[J]. Explosion And Shock Waves, 2006, 26(3): 279-283. doi: 10.11883/1001-1455(2006)03-0279-05 |