Citation: | LIN Kunfu, ZHANG Xianfeng, CHEN Haihua, XIONG Wei, LIU Chuang, ZHANG Quanxiao. Penetration behaviors of Hf-based amorphous alloy jacketed rods[J]. Explosion And Shock Waves, 2021, 41(2): 023301. doi: 10.11883/bzycj-2020-0181 |
[1] |
杜忠华, 杜成鑫, 朱正旺, 等. 钨丝/锆基非晶复合材料长杆体弹芯穿甲实验研究 [J]. 稀有金属材料与工程, 2016, 45(5): 1308–1313.
DU Z H, DU C X, ZHU Z W, et al. An experimental study on perforation behavior of pole penetrator prepared from WF/Zr-based bulk metallic glass matrix composite [J]. Rare Metal Materials and Engineering, 2016, 45(5): 1308–1313.
|
[2] |
CULLIS I G, LYNCH N J. Hydrocode and experimental analysis of scale size jacketed KE projectiles [C] // Proceedings of the 14th International Symposium on Ballistics. Quebec, Canada, 1993: 271−280.
|
[3] |
LEHR H F, WOLLMAN E, KOERBER G. Experiments with jacketed rods of high fineness ratio [J]. International Journal of Impact Engineering, 1995, 17(4−6): 517–526. DOI: 10.1016/0734-743x(95)99876-s.
|
[4] |
SORENSEN B R, KIMSEY K D, ZUKAS J A, et al. Numerical analysis and modeling of jacketed rod penetration [J]. International Journal of Impact Engineering, 1999, 22(1): 71–91. DOI: 10.1016/S0734-743X(98)00043-8.
|
[5] |
PEDERSEN B A, BLESS S J, CAZAMIAS J U. Hypervelocity jacketed penetrators [J]. International Journal of Impact Engineering, 2001, 26(1−10): 603–611. DOI: 10.1016/S0734-743X(01)00121-X.
|
[6] |
LEE M. Analysis of jacketed rod penetration [J]. International Journal of Impact Engineering, 2000, 24(9): 891–905. DOI: 10.1016/S0734-743X(00)00020-8.
|
[7] |
WEN H M, HE Y, LAN B. A combined numerical and theoretical study on the penetration of a jacketed rod into semi-infinite targets [J]. International Journal of Impact Engineering, 2011, 38(12): 1001–1010. DOI: 10.1016/j.ijimpeng.2011.07.001.
|
[8] |
TANG K, WANG J, CHEN X, et al. Investigation on the damage mechanisms and penetration performance of jacketed rods with different striking velocities [J]. Journal of Applied Mechanics and Technical Physics, 2019, 60(4): 724–731. DOI: 10.1134/S0021894419040175.
|
[9] |
兰彬. 长杆弹侵彻半无限靶的数值模拟和理论研究[D]. 合肥: 中国科学技术大学, 2008: 91−99.
|
[10] |
何雨. 长杆弹撞击下金属靶板侵彻与穿透的进一步研究[D]. 合肥: 中国科学技术大学, 2013: 40−46.
|
[11] |
CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007.
|
[12] |
MARTIN M, KECSKES L, THADHANI N N. Dynamic compression of a zirconium-based bulk metallic glass confined by a stainless steel sleeve [J]. Scripta Materialia, 2008, 59(7): 688–691. DOI: 10.1016/j.scriptamat.2008.05.045.
|
[13] |
潘念侨. Zr基非晶合金材料动态本构关系及其释能效应研究[D]. 南京: 南京理工大学, 2016: 36−54.
|
[14] |
尚春明, 施冬梅, 张云峰, 等. Zr基非晶合金毁伤研究进展 [J]. 兵器装备工程学报, 2020, 41(7): 182–186. DOI: 10.11809/bqzbgcxb2020.07.036.
SHANG C M, SHI D M, ZHANG Y F, et al. Research progress on damage of Zr-based amorphous alloys [J]. Journal of Ordnance Equipment Engineering, 2020, 41(7): 182–186. DOI: 10.11809/bqzbgcxb2020.07.036.
|
[15] |
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177–351.
WANG W H. The nature and properties of amorphous matter [J]. Progress in Physics, 2013, 33(5): 177–351.
|
[16] |
陈曦, 杜成鑫, 程春, 等. Zr基非晶合金材料的冲击释能特性 [J]. 兵器材料科学与工程, 2018, 41(6): 44–49. DOI: 10.14024/j.cnki.1004-244x.20180717.002.
CHEN X, DU C X, CHENG C, et al. Impact energy releasing characteristics of Zr-based amorphous alloy [J]. Ordnance Material Science and Engineering, 2018, 41(6): 44–49. DOI: 10.14024/j.cnki.1004-244x.20180717.002.
|
[17] |
宋璇, 吴先前, 戴兰宏, 等. 纳秒脉冲激光烧蚀非晶合金的研究进展 [J]. 固体力学学报, 2018, 39(5): 439–452. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2018.032.
SONG X, WU X Q, DAI L H, et al. Advances on nanosecond pulse laser ablation of amorphous alloys [J]. Chinese Journal of Solid Mechanics, 2018, 39(5): 439–452. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2018.032.
|
[18] |
尚春明, 施冬梅, 张云峰, 等. Zr基非晶合金的燃烧释能特性 [J]. 含能材料, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.
SHANG C M, SHI D M, ZHANG Y F, et al. Combustion and energy release characteristics of Zr-based amorphous alloys [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.
|
[19] |
HUANG C M, LI S, BAI S X. Quasi-static and impact-initiated response of Zr55Ni5Al10Cu30 alloy [J]. Journal of Non-Crystalline Solids, 2018, 481: 59–64. DOI: 10.1016/j.jnoncrysol.2017.10.011.
|
[20] |
石永相, 施冬梅. ZrCuNiAlAg块体非晶合金动静态力学性能研究 [J]. 热加工工艺, 2019, 48(6): 83–86, 90. DOI: 10.14158/j.cnki.1001-3814.2019.06.020.
SHI Y X, SHI D M. Study on dynamic and static mechanical properties of ZrCuNiAlAg bulk amorphous alloy [J]. Hot Working Technology, 2019, 48(6): 83–86, 90. DOI: 10.14158/j.cnki.1001-3814.2019.06.020.
|
[21] |
石永相. 多元非晶合金含能材料药型罩应用研究[D]. 石家庄: 陆军工程大学, 2017: 44−56.
|
[22] |
HU K, LI X Q, GUAN M, et al. Dynamic deformation behavior of 93W-5.6Ni-1.4Fe heavy alloy prepared by spark plasma sintering [J]. International Journal of Refractory Metals and Hard Materials, 2016, 58: 117–124. DOI: 10.1016/j.ijrmhm.2016.04.010.
|
[23] |
郭俊. 活性分段动能杆对混凝土靶的毁伤效应研究[D]. 北京: 北京理工大学, 2016: 36−64.
|