Volume 41 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
LU Hao, YUE Songlin, SUN Shanzheng, SONG Chunming, XIONG Ziming. Model test study on damage depth of concrete target under penetration and explosion[J]. Explosion And Shock Waves, 2021, 41(7): 073301. doi: 10.11883/bzycj-2020-0191
Citation: LU Hao, YUE Songlin, SUN Shanzheng, SONG Chunming, XIONG Ziming. Model test study on damage depth of concrete target under penetration and explosion[J]. Explosion And Shock Waves, 2021, 41(7): 073301. doi: 10.11883/bzycj-2020-0191

Model test study on damage depth of concrete target under penetration and explosion

doi: 10.11883/bzycj-2020-0191
  • Received Date: 2020-06-10
  • Rev Recd Date: 2021-01-31
  • Available Online: 2021-06-30
  • Publish Date: 2021-07-05
  • In order to study the influence of the cavity on the explosion effect caused by the penetration of concrete target, model tests of penetration and explosion of concrete target at the velocity of 450–700 m/s were carried out. Based on 10 sets of test results and dimensional analysis, the effect of penetration result on the depth of blast hole is studied. Results indicate that the dimensionless impact coefficient Ip can be used to characterize the penetration effects such as penetration depth, hole volume and penetration damage value, regardless of length-diameter ratio of charge, the increase of damage depth is mainly influenced by dimensionless impact coefficient Ip and explosion coefficient Ie. Based on the experimental data, influence rule of the depth of crater is obtained for the length-diameter ratio of 5: (1) when the Ip is small, the penetration depth is small, the change of Ie has little influence on the depth of crater he; (2) with the increase of Ip, he increases at a decreasing rate, influence of Ie on he increases; (3) with the increase of Ip to a certain extent, he tends to reachsaturation value, influence of Ie on he tends to be stable.
  • loading
  • [1]
    FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [2]
    FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [3]
    王明洋, 郑大亮, 白晓燕. 弹体对钢筋混凝土板-钢板的贯穿计算问题 [J]. 爆炸与冲击, 2005, 25(4): 289–295. DOI: 10.11883/1001-1455(2005)04-0289-07.

    WANG M Y, ZHENG D L, BAI X Y. Theoretical study on the perforation of reinforced concrete with back-up steel plate(RCBSP) by projectiles [J]. Explosion and Shock Waves, 2005, 25(4): 289–295. DOI: 10.11883/1001-1455(2005)04-0289-07.
    [4]
    邓国强, 杨秀敏. 工程岩体中多弹重复打击效应的数值模拟分析 [J]. 爆炸与冲击, 2014, 34(3): 361–366. DOI: 10.11883/1001-1455(2014)03-0361-06.

    DENG G Q, YANG X M. Numerical simulation of the effect of multiply EPW into engineering rock [J]. Explosion and Shock Waves, 2014, 34(3): 361–366. DOI: 10.11883/1001-1455(2014)03-0361-06.
    [5]
    GANG H, KWAK H G. A strain rate dependent orthotropic concrete material model [J]. International Journal of Impact Engineering, 2017, 103: 211–224. DOI: 10.1016/j.ijimpeng.2017.01.027.
    [6]
    吴成, 沈晓军, 王晓鸣, 等. 细观混凝土靶抗侵彻数值模拟及侵彻深度模型 [J]. 爆炸与冲击, 2018, 38(6): 1364–1371. DOI: 10.11883/bzycj-2017-0123.

    WU C, SHEN X J, WANG X M, et al. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target [J]. Explosion and Shock Waves, 2018, 38(6): 1364–1371. DOI: 10.11883/bzycj-2017-0123.
    [7]
    SHER E N, MIKHAILOV A M, CHERNIKOV A G. Brittle failure zone size under the concentrated charge blasting near free surface [J]. Journal of Mining Science, 2011, 47(6): 734–740. DOI: 10.1134/S1062739147060050.
    [8]
    FU Y S, ZHANG Q M, WANG H J. Study on formative mechanism of blasting crater in reinforced concrete under internal blast loading [J]. Key Engineering Materials, 2006, 326/328: 1645–1648. DOI: 10.4028/www.scientific.net/KEM.326-328.1645.
    [9]
    王晋平, 刘彦, 段卓平, 等. 带壳装药混凝土中爆炸震塌效应研究 [J]. 兵工学报, 2014, 35(S2): 207–212.

    WANG J P, LIU Y, DUAN Z P, et al. Collapse effect of concrete under internal explosion of shelled charge [J]. Acta Armamentarii, 2014, 35(S2): 207–212.
    [10]
    高全臣. 复合防护结构抗侵彻爆炸性能的试验研究[C] // 现代爆破理论与技术——第十届全国煤炭爆破学术会议论文集. 北京: 煤炭工业出版社, 2008: 93−98.
    [11]
    YANG G D, WANG G H, LU W B, et al. A SPH-Lagrangian-Eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion [J]. KSCE Journal of Civil Engineering, 2018, 22(8): 3085–3101. DOI: 10.1007/s12205-017-0610-1.
    [12]
    宋顺成, 李国斌, 才鸿年, 等. 战斗部对混凝土先侵彻后爆轰的数值模拟 [J]. 兵工学报, 2006, 27(2): 230–234. DOI: 10.3321/j.issn:1000-1093.2006.02.010.

    SONG S C, LI G B, CAI H N, et al. Numerical simulation of penetration-then-detonation of concrete target with projectile [J]. Acta Armamentarii, 2006, 27(2): 230–234. DOI: 10.3321/j.issn:1000-1093.2006.02.010.
    [13]
    宋顺成, 才鸿年. 模拟战斗部对混凝土侵彻与爆炸耦合作用的计算 [J]. 弹道学报, 2004, 16(4): 23–28, 47. DOI: 10.3969/j.issn.1004-499X.2004.04.005.

    SONG S C, CAI H N. Computations for coupled actions of simulated projectile penetrating and detonating to concrete [J]. Journal of Ballistics, 2004, 16(4): 23–28, 47. DOI: 10.3969/j.issn.1004-499X.2004.04.005.
    [14]
    李守苍, 李树强, 闫玉凤, 等. 战斗部侵彻钢筋混凝土靶中爆炸毁伤的数值模拟和试验研究 [J]. 防护工程, 2016, 38(4): 5–10.

    LI S C, LI S Q, YAN Y F, et al. Numerical simulation and experimental study on warhead explosion damage after penetration into reinforced concrete target [J]. Protective Engineering, 2016, 38(4): 5–10.
    [15]
    杨广栋, 王高辉, 卢文波, 等. 侵彻与爆炸联合作用下混凝土靶体的毁伤效应分析 [J]. 中南大学学报(自然科学版), 2017, 48(12): 3284–3292. DOI: 10.11817/j.issn.1672-7207.2017.12.020.

    YANG G D, WANG G H, LU W B, et al. Damage characteristics of concrete structures under the combined loadings of penetration and explosion [J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3284–3292. DOI: 10.11817/j.issn.1672-7207.2017.12.020.
    [16]
    任辉启, 穆朝民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护[M]. 北京: 科学出版社, 2016.

    REN H Q, MU C M, LIU R C, et al. Penetration effects of precision guided weapons and engineering protection [M]. Beijing: Science Press, 2016.
    [17]
    LI J Z, LV Z J, ZHANG H S, et al. Perforation experiments of concrete targets with residual velocity measurements [J]. International Journal of Impact Engineering, 2013, 57: 1–6. DOI: 10.1016/j.ijimpeng.2013.01.007.
    [18]
    PENG Y, WU H, FANG Q, et al. Residual velocities of projectiles after normally perforating the thin ultra-high performance steel fiber reinforced concrete slabs [J]. International Journal of Impact Engineering, 2016, 97: 1–9. DOI: 10.1016/j.ijimpeng.2016.06.006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (556) PDF downloads(160) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return