Volume 41 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
ZHU Ling, GUO Kailing, YU Tongxi, LI Yinggang. Dynamic responses of metal foam sandwich beams to repeated impacts[J]. Explosion And Shock Waves, 2021, 41(7): 073101. doi: 10.11883/bzycj-2020-0198
Citation: ZHU Ling, GUO Kailing, YU Tongxi, LI Yinggang. Dynamic responses of metal foam sandwich beams to repeated impacts[J]. Explosion And Shock Waves, 2021, 41(7): 073101. doi: 10.11883/bzycj-2020-0198

Dynamic responses of metal foam sandwich beams to repeated impacts

doi: 10.11883/bzycj-2020-0198
  • Received Date: 2020-06-16
  • Rev Recd Date: 2021-03-17
  • Available Online: 2021-07-06
  • Publish Date: 2021-07-05
  • The phenomena of repeated impacts are very common, especial in the field of ship and ocean engineering. When the ship structures suffering from repeated impact loadings, the deformation and damages will accumulate, leading to failure even damage of the structures, which may cause serious accident. In order to study the dynamic behaviors of metal foam sandwich beams (MFSBs) under repeated impact loadings, the nonlinear finite element model was established based on the material model of crushable foam by using Abaqus-Explicit, and the approach to achieve repeated impacts in the software was proposed. The accuracy of the numerical simulation was verified by comparing the permanent deflections of front and back face sheets. Based on the results of the numerical simulations, the deformation modes, loading and unloading process as well as the energy absorption behavior of the MFSBs under repeated impacts were analyzed. Results show that during repeated impacts, the deformation of the MFSBs is accumulated gradually, the front face sheet mainly experiences global bending and local indentation, and the metal foam core suffers from local compression, while the back face sheet is subjected to global bending. During the repeated impacts, the loading and unloading stiffness increases with the impact number. The energy absorption of front face is larger than that of back face and metal foam core in all the impacts. As the impact number increases, the energy absorbed by front face sheet and foam core declines gradually, while that of the back face sheet increases, approaching a constant value. The plastic deformation energy of the MFSBs decreases with the impact number, on the opposite, the rebound energy of the MFSBs increases gradually with the impact number, while both of them trends to be stable. The proposed finite element method can be applied to accurately predict the dynamic responses of the MFSBs suffering from repeated impact loadings, and provide technical supports for the anti-impact design of metal foam sandwich structures.
  • loading
  • [1]
    ZHU L. Dynamic inelastic behaviour of ship plates in collision [D]. Glasgow: University of Glasgow, 1990: 45−56.
    [2]
    ZHU L. Faulkner D. Damage estimate for plating of ships and platforms under repeated impacts [J]. Marine Structures, 1996, 9(9): 697–720. DOI: 10.1016/0951-8339(95)00018-6.
    [3]
    ZHU L, CAI W, CHEN M S, et al. Dynamic analysis of ship plates under repeated ice floes impacts based on a simplified ship-ice collision model [C]//Proceedings of the 28th International Ocean and Polar Engineering Conference. Sapporo, Japan: International Society of Offshore and Polar Engineers, 2018: 1718−1723.
    [4]
    ZHU L, SHI S Y, JONES N. Dynamic response of stiffened plates under repeated impacts [J]. International Journal of Impact Engineering, 2018, 117: 113–122. DOI: 10.1016/j.ijimpeng.2018.03.006.
    [5]
    杨宝, 汤立群, 刘逸平, 等. 冲击条件下泡沫铝的细观变形特征分析 [J]. 爆炸与冲击, 2012, 32(4): 399–403. DOI: 10.11883/1001-1455(2012)04-0399-05.

    YANG B, TANG L Q, LIU Y P, et al. Meso deformation characteristics analysis of aluminum foam under impact [J]. Explosion and Shock Waves, 2012, 32(4): 399–403. DOI: 10.11883/1001-1455(2012)04-0399-05.
    [6]
    王鹏飞, 徐松林, 李志斌, 等. 高温下轻质泡沫铝动态力学性能实验 [J]. 爆炸与冲击, 2014, 34(4): 433–438. DOI: 10.11883/1001-1455(2014)04-0433-06.

    WANG P F, XU S L, LI Z B, et al. An experimental study on dynamic mechanical property of ultra-light aluminum foam under high temperatures [J]. Explosion and Shock Waves, 2014, 34(4): 433–438. DOI: 10.11883/1001-1455(2014)04-0433-06.
    [7]
    YU J L, WANG X, WEI Z G, et al. Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core [J]. International Journal of Impact Engineering, 2003, 28(3): 331–347. DOI: 10.1016/S0734-743X(02)00053-2.
    [8]
    YU J L, WANG E H, LI J R, et al. Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending [J]. International Journal of Impact Engineering, 2008, 35(8): 885–894. DOI: 10.1016/j.ijimpeng.2008.01.006.
    [9]
    TAN Z H, LUO H H, LONG W G, et al. Dynamic response of clamped sandwich beam with aluminum alloy foam core subjected to impact loading [J]. Composites Part B: Engineering, 2013, 46: 39–45. DOI: 10.1016/j.compositesb.2012.10.044.
    [10]
    敬霖, 王志华, 赵隆茂, 等. 撞击载荷下泡沫铝夹芯梁的塑性动力响应 [J]. 爆炸与冲击, 2010, 30(6): 561–568. DOI: 10.11883/1001-1455(2010)06-0561-08.

    JING L, WANG Z H, ZHAO L M, et al. Dynamic plastic response of foam sandwich beams subjected to impact loading [J]. Explosion and Shock Waves, 2010, 30(6): 561–568. DOI: 10.11883/1001-1455(2010)06-0561-08.
    [11]
    JING L, WANG Z H, NING J G, et al. The dynamic response of sandwich beams with open-cell metal foam cores [J]. Composites Part B: Engineering, 2011, 42(1): 1–10. DOI: 10.1016/j.compositesb.2010.09.024.
    [12]
    DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6−7): 1253–1283. DOI: 10.1016/S0022-5096(99)00082-4.
    [13]
    QIU X M, DESHPANDE V S, FLECK N A. Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading [J]. European Journal of Mechanics: A/Solids, 2003, 22(6): 801–814. DOI: 10.1016/j.euromechsol.2003.09.002.
    [14]
    TILBROOK M T, DESHPANDE V S, FLECK N A. Underwater blast loading of sandwich beams: regimes of behaviour [J]. International Journal of Solids and Structures, 2009, 46(17): 3209–3221. DOI: 10.1016/j.ijsolstr.2009.04.012.
    [15]
    JING L, SU X Y, CHEN D, et al. Experimental and numerical study of sandwich beams with layered-gradient foam cores under low-velocity impact [J]. Thin-Walled Structures, 2019, 135: 227–244. DOI: 10.1016/j.tws.2018.11.011.
    [16]
    QIU X M, DESHPANDE V S, FLECK N A. Impulsive loading of clamped monolithic and sandwich beams over a central patch [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(5): 1015–1046. DOI: 10.1016/j.jmps.2004.12.004.
    [17]
    QIN Q H, WANG T J. Low-velocity heavy-mass impact response of slender metal foam core sandwich beam [J]. Composite Structures, 2011, 93(6): 1526–1537. DOI: 10.1016/j.compstruct.2010.11.018.
    [18]
    QIN Q H, WANG T J. Low-velocity impact response of fully clamped metal foam core sandwich beam incorporating local denting effect [J]. Composite Structures, 2013, 96: 346–356. DOI: 10.1016/j.compstruct.2012.09.024.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (939) PDF downloads(213) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return