Citation: | LIU Erwei, XU Shengli, ZHOU Jie, ZUO Jindong. Development of gas guns combined with a water tank for launching high-velocity projectiles into water obliquely and horizontally[J]. Explosion And Shock Waves, 2022, 42(1): 014101. doi: 10.11883/bzycj-2020-0207 |
[1] |
何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示 [J]. 舰船科学技术, 2016, 38(5): 152–157. DOI: 10.3404/j.issn.1672-7619.2016.05.032.
HE Z X, ZHENG Z S, MA D L, et al. Development of foreign trans-media aircraft and its enlightenment to China [J]. Ship Science and Technology, 2016, 38(5): 152–157. DOI: 10.3404/j.issn.1672-7619.2016.05.032.
|
[2] |
LEXOW B, WICKERT M, THOMA K, et al. The extra-large light-gas gun of the Fraunhofer EMI: applications for impact cratering research [J]. Meteoritics and Planetary Science, 2012, 48(1): 3–7. DOI: 10.1111/j.1945-5100.2012.01427.x.
|
[3] |
王金贵. 气体炮原理及技术 [M]. 北京: 国防工业出版社, 2001: 65−70.
|
[4] |
张德志, 唐润棣, 林俊德, 等. 新型气体驱动二级轻气炮研制 [J]. 兵工学报, 2004, 25(1): 14–18. DOI: 10.3321/j.issn:1000-1093.2004.01.004.
ZHANG D Z, TANG R D, LIN J D, et al. Development of a new type gas-driven two-stage light gas gun [J]. Acta Armamentarii, 2004, 25(1): 14–18. DOI: 10.3321/j.issn:1000-1093.2004.01.004.
|
[5] |
冯建宁, 彭炎午, 林俊德. 新型非火药驱动二级轻气炮内弹道诸问题的研究 [J]. 西北工业大学学报, 1994, 12(3): 477–481.
FENG J N, PENG Y W, LIN J D, et al. On some problems of interior ballistics in a new type two-stage light gas gun with non-powder projection [J]. Journal of Northwestern Polytechnical University, 1994, 12(3): 477–481.
|
[6] |
林俊德, 张向荣, 朱玉荣, 等. 超高速撞击实验的三级压缩气炮技术 [J]. 爆炸与冲击, 2012, 32(5): 483–489. DOI: 10.11883/1001-1455(2012)05-0483-07.
LIN J D, ZHANG X R, ZHU Y R, et al. The technique of three-stage compressed-gas gun for hypervelocity impact [J]. Explosion and Shock Waves, 2012, 32(5): 483–489. DOI: 10.11883/1001-1455(2012)05-0483-07.
|
[7] |
THORNHILL T F, CHHABILDAS L C, REINHART W D, et al. Particle launch to 19km/s for micro-meteoroid simulation using enhanced three-stage light gas gun hypervelocity launcher techniques [J]. International Journal of Impact Engineering, 2006, 33(1): 799–811.
|
[8] |
PIEKUTOWSKI A J, POORMON K L. Development of a three-stage, light-gas gun at the University of Dayton Research Institute [J]. International Journal of Impact Engineering, 2006, 33(1): 615–624.
|
[9] |
MORITOH T, KAWAI N, NAKAMURA K G, et al. Three-stage light-gas gun with a preheating stage [J]. Review of Scientific Instruments, 2004, 75(2): 537–540. DOI: 10.1063/1.1641155.
|
[10] |
张庆明, 龙仁荣, 郑克勤, 等. 基于氢氧混合爆轰驱动的三级轻气炮: CN201710137286.1 [P]. 2017-06-27.
|
[11] |
WANG X, DAI C D, WANG Q S, et al. Development of a three-stage gas gun launcher for ultrahigh-pressure Hugoniot measurements [J]. Review of Scientific Instruments, 2019, 90(1): 013903. DOI: 10.1063/1.5035502.
|
[12] |
董石, 孟川民, 肖元陆, 等. 反应气体驱动二级轻气炮技术的初步研究 [J]. 高压物理学报, 2017, 31(2): 182–186. DOI: 10.11858/gywlxb.2017.02.011.
DONG S, MENG C M, XIAO Y L, et al. Preliminary study of two-stage light gas gun using reactive gas as driving energy [J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 182–186. DOI: 10.11858/gywlxb.2017.02.011.
|
[13] |
张向荣, 朱玉荣, 林俊德, 等. 压缩氮气驱动的高速气炮实验技术 [J]. 航天器环境工程, 2015, 32(4): 343–348. DOI: 10.3969/j.issn.1673-1379.2015.04.001.
ZHANG X R, ZHU Y R, LIN J D, et al. Experimental technique of high velocity gas gun driven by compressed nitrogen [J]. Spacecraft Environment Engineering, 2015, 32(4): 343–348. DOI: 10.3969/j.issn.1673-1379.2015.04.001.
|
[14] |
黄振贵, 王瑞琦, 陈志华, 等. 90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性 [J]. 爆炸与冲击, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
HUANG Z G, WANG R Q, CHEN Z H, et al. Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities [J]. Explosion and Shock Waves, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
|
[15] |
罗驭川, 黄振贵, 高建国, 等. 截锥体头型弹丸低速斜入水实验研究 [J]. 爆炸与冲击, 2019, 39(11): 113902. DOI: 10.11883/bzycj-2018-0498.
LUO Y C, HUANG Z G, GAO J G, et al. Experiment research of low-speed oblique water-entry of truncated cone-shaped projectile [J]. Explosion and Shock Waves, 2019, 39(11): 113902. DOI: 10.11883/bzycj-2018-0498.
|
[16] |
时素果, 杨晓光, 王亚东, 等. 细长体高速入水过程压力特性试验研究 [J]. 应用力学学报, 2018, 35(2): 223–227. DOI: 10.11776/cjam.35.02.A009.
SHI S G, YANG X G, WANG Y D, et al. Experimental study on the pressure characteristic of high-speed slender body water entry [J]. Chinese Journal of Applied Mechanics, 2018, 35(2): 223–227. DOI: 10.11776/cjam.35.02.A009.
|
[17] |
陈诚, 袁绪龙, 邢晓琳, 等. 预置舵角下超空泡航行体倾斜入水弹道特性研究 [J]. 兵工学报, 2018, 39(9): 1780–1785. DOI: 10.3969/j.issn.1000-1093.2018.09.015.
CHEN C, YUAN X L, XING X L, et al. Research on the trajectory characteristics of supercavitating vehicle obliquely entering into water at preset rudder angle [J]. Acta Armamentarii, 2018, 39(9): 1780–1785. DOI: 10.3969/j.issn.1000-1093.2018.09.015.
|
[18] |
张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigations on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
|
[19] |
CHEN T, HUANG W, ZHANG W, et al. Experimental investigation on trajectory stability of high-speed water entry projectiles [J]. Ocean Engineering, 2019, 175: 16–24. DOI: 10.1016/j.oceaneng.2019.02.021.
|