Citation: | YAN Peng, FANG Qin, ZHANG Jinhua, ZHANG Yadong, CHEN Li, FAN Junyu. Experimental study of different typical shape falling-rocks impacting on the sand cushion and dimensionless analysis[J]. Explosion And Shock Waves, 2021, 41(7): 073303. doi: 10.11883/bzycj-2020-0219 |
[1] |
JACQUEMOUD J. Swiss guideline for the design of protection galleries: background, safety concept and case histories [C] // Impact Load by Rock Falls and Design of Protection Structures, Joint Japan-Swiss Scientific Seminar. Kanazawa, Japan: Kanazawa University, 1999.
|
[2] |
山口悟, 木幡行宏, 小室雅人, 等. 敷砂あるいは砕石緩衝材の緩衝特性に関する大型重錘落下衝撃実験 [C] // 構造工学論文集, 2014, 60: 983–995.
|
[3] |
CALVETTI F, PRISCO C, VECCHIOTTI M. Experimental and numerical study of rock-fall impacts on granular soils [J]. Rivista Italiana di Geotecnica, 2005, 4: 95–109.
|
[4] |
GERBER W, VOLKWEIN A. Impact loads of falling rocks on granular material [C] // Third Euro Mediterranean Symposium on Advances in Geomaterials and Structures, 2010, 10: 337–342.
|
[5] |
袁进科, 黄润秋, 裴向军. 滚石冲击力测试研究 [J]. 岩土力学, 2014, 35(1): 48–54. DOI: 10.16285/j.rsm.2014.01.011.
YUAN J K, HUANG R Q, PEI X J. Test research on rockfall impact force [J]. Rock and Soil Mechanics, 2014, 35(1): 48–54. DOI: 10.16285/j.rsm.2014.01.011.
|
[6] |
YU B, YI W, ZHAO H B. Experimental study on the maximum impact force by rock fall [J]. Landslides, 2018, 15(2): 233–242. DOI: 10.1007/s10346-017-0876-x.
|
[7] |
何思明, 沈均, 吴永. 滚石冲击荷载下棚洞结构动力响应 [J]. 岩土力学, 2011, 32(3): 781–788. DOI: 10.16285/j.rsm.2011.03.033.
HE S M, SHEN J, WU Y. Rock shed dynamic response to impact of rock-fall [J]. Rock and Soil Mechanics, 2011, 32(3): 781–788. DOI: 10.16285/j.rsm.2011.03.033.
|
[8] |
FITYUS S G, GIACOMINI A, BUZZI O. The significance of geology for the morphology of potentially unstable rocks [J]. Engineering Geology, 2013, 162: 43–52. DOI: 10.1016/j.enggeo.2013.05.007.
|
[9] |
重庆交通科研设计院. 公路隧道设计规范: JTG D70–2004 [S]. 北京: 人民交通出版社, 2004.
|
[10] |
铁道部第二设计院. 铁路工程设计技术手册(隧道) [M]. 北京: 人民铁道出版社, 1978.
|
[11] |
杨其新, 关宝树. 落石冲击力计算方法的试验研究 [J]. 铁道学报, 1996, 18(1): 101–106. DOI: 10.3321/j.issn:1001-8360.1996.01.017.
YANG Q X, GUAN B S. Test and research on calculating method of falling stone impulsive force [J]. Journal of the China Railway Society, 1996, 18(1): 101–106. DOI: 10.3321/j.issn:1001-8360.1996.01.017.
|
[12] |
Janpan Road Association. Manual for anti-impact structures against falling rocks [M]. Tokyo, Japan: Maruzen Publisher, 2000.
|
[13] |
LABIOUSE V, DESCOEUDRES F, MONTANI S. Experimental study of rock sheds impacted by rock blocks [J]. Structural Engineering International, 1996, 6(3): 171–176. DOI: 10.2749/101686696780495536.
|
[14] |
ASTRA S B B. Einwirkungen infolge Steinschlags auf Schutzgalerien [M]. Bern: Swiss Federal Roads Office and Swiss Federal Railways, 2008.
|
[15] |
PICHLER B, HELLMICH C, MANG H A. Impact of rocks onto gravel design and evaluation of experiments [J]. International Journal of Impact Engineering, 2005, 31(5): 559–578. DOI: 10.1016/j.ijimpeng.2004.01.007.
|
[16] |
MOUGIN J P, PERROTIN P, MOMMESSIN M, et al. Rock fall impact on reinforced concrete slab: an experimental approach [J]. International Journal of Impact Engineering, 2005, 31(2): 169–183. DOI: 10.1016/j.ijimpeng.2003.11.005.
|
[17] |
SCHELLENBERG K, KHASRAGHY G S, VOGEL T, et al. Impact behavior of reinforced concrete slabs subjected to rock fall loading [C] // SUSI 2008. Southampton: WIT Press, 2008, 98: 25–34.
|
[18] |
DELHOMME F, MOMMESSIN M, MOUGIN J P, et al. Simulation of a block impacting a reinforced concrete slab with a finite element model and a mass-spring system [J]. Engineering Structures, 2007, 29(11): 2844–2852. DOI: 10.1016/j.engstruct.2007.01.017.
|
[19] |
CHIKATAMARLA R, LAUE J, SPRINGMAN S M. Rockfall impact on protection galleries [C] // The Second International Conference of Structural Engineering Mechanics and Computations. Cape Town, South Africa, 2004: 1139–1144.
|
[20] |
PERERA S, LAM N, PATHIRANA M, et al. Deterministic solutions for contact force generated by impact of windborne debris [J]. International Journal of Impact Engineering, 2016, 91: 126–141. DOI: 10.1016/j.ijimpeng.2016.01.002.
|
[21] |
唐建辉. 落石冲击对隧道明洞结构的影响研究 [D]. 成都: 西南交通大学, 2013.
|
[22] |
陈驰, 刘成清, 陈林雅, 等. 落石作用于钢筋混凝土棚洞的冲击力研究 [J]. 公路交通科技, 2015, 32(1): 102–109. DOI: 10.3969/j.issn.1002-0268.2015.01.017.
CHEN C, LIU C Q, CHEN L Y, et al. Study on impact force of rock-fall onto rock shed tunnel [J]. Journal of Highway and Transportation Research and Development, 2015, 32(1): 102–109. DOI: 10.3969/j.issn.1002-0268.2015.01.017.
|
[23] |
SHEN W G, ZHAO T, DAI F, et al. DEM analyses of rock block shape effect on the response of rockfall impact against a soil buffering layer [J]. Engineering Geology, 2019, 249: 60–70. DOI: 10.1016/j.enggeo.2018.12.011.
|
[24] |
CALVETTI F, DI PRISCO C. Rockfall impacts on sheltering tunnels: real-scale experiments [J]. Géotechnique, 2012, 62(10): 865–876. DOI: 10.1680/geot.9.p.036.
|
[25] |
YAN P, ZHANG J, FANG Q, et al. Numerical simulation of the effects of falling rock’s shape and impact pose on impact force and response of RC slabs [J]. Construction and Building Materials, 2018, 160: 497–504. DOI: 10.1016/j.conbuildmat.2017.11.087.
|
[26] |
KAWAHARA S, MURO T. Effects of dry density and thickness of sandy soil on impact response due to rockfall [J]. Journal of Terramechanics, 2006, 43(3): 329–340. DOI: 10.1016/j.jterra.2005.05.009.
|
[27] |
唐红梅, 鲜学福, 王林峰, 等. 基于小波变换的碎石土垫层落石冲击回弹系数试验 [J]. 岩土工程学报, 2012, 34(7): 1278–1282.
TANG H M, XIAN X F, WANG L F, et al. Coefficient of resilience for rock fall onto gravel soil cushion based on wavelet transform theory [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1278–1282.
|
[28] |
JONES N. Structural impact [M]. London: Cambridge University Press, 1989.
|
[29] |
BUCKINGHAM E. On physically similar systems; illustrations of the use of dimensional equations [J]. Physical Review, 1914, 4(4): 345–376. DOI: 10.1103/physrev.4.345.
|
[30] |
SEGUIN A, BERTHO Y, MARTINEZ F, et al. Experimental velocity fields and forces for a cylinder penetrating into a granular medium [J]. Physical Review E, 2013, 87(1): 1–10. DOI: 10.1103/physreve.87.012201.
|
[31] |
LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/s0734-743x(02)00037-4.
|
[32] |
FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets [J]. International Journal of Solids and Structures, 1997, 34(31–32): 4127–4146. DOI: 10.1016/s0020-7683(97)00017-6.
|
[33] |
FORRESTAL M J, LUK V K. Penetration into soil targets [J]. International Journal of Impact Engineering, 1992, 12(3): 427–444. DOI: 10.1016/0734-743x(92)90167-r.
|
[34] |
WYLLIE D C. Rock fall engineering [M]. Boca Raton: CRC Press, 2015.
|
[35] |
铁道第二勘察设计院. 铁路隧道设计规范: TB 10003–2005 [S] 北京: 中国铁道出版社, 2005.
|
1. | 明付仁,王嘉捷,刘文韬,刘祥聚,张阿漫. 高速跨介质入水多相流动与流固耦合特性研究综述. 空气动力学学报. 2024(01): 68-85+67 . ![]() | |
2. | 金泽华,刘清洋,马文朝,孟军辉. 新型星形负泊松比抗冲击结构设计与入水冲击. 兵工学报. 2024(05): 1497-1513 . ![]() | |
3. | 齐辉,郭晶,褚福庆,吴昊,杨祥龙,赵海博,付豪,王鹏. 跨介质航行器入水流固耦合特性研究综述. 上海航天(中英文). 2024(03): 74-86 . ![]() | |
4. | 郑伟,李强,范旭东,吕续舰. 跨介质航行器高速入水降载方法研究综述. 水下无人系统学报. 2024(03): 411-425 . ![]() | |
5. | 王余,熊永亮,田轩麾,周福昌,刘翱,孙国仓. 不同头型回转体高速入水运动过程对比研究. 水下无人系统学报. 2024(03): 451-462 . ![]() | |
6. | 吴锦达,厉擎阳,许柏园,常宇,曲艳东. 不同长径比装药对海底管道峰值振速的影响. 工程爆破. 2024(03): 143-151 . ![]() | |
7. | 肖有才,邢旭阳,杨佩琮,张宏,熊言义,徐忠四,赵志颖,孙毅. 基于ALE方法的弹体入水硬质聚氨酯泡沫缓冲器降载性能分析. 船舶力学. 2024(07): 1111-1123 . ![]() | |
8. | 王岳扬,陈绍露,龙镜冰,汪家威,陈莹玉. 带泡沫头帽圆柱体入水机理试验研究. 振动与冲击. 2024(20): 263-274+297 . ![]() | |
9. | 刘想炎,于楠,黄振贵,陈志华,马长胜,邱荣贤. 不同入水攻角下高速射弹的流固耦合特性. 兵工学报. 2024(10): 3415-3429 . ![]() | |
10. | 肖睿,魏继锋,吉耿杰,冯宇浪. 前抛体对弹体入水载荷影响数值模拟研究. 爆炸与冲击. 2023(04): 67-80 . ![]() | |
11. | 贺征,高紫晴,顾璇,高子舒. 鱼雷垂直入水瞬间结构响应的数值模拟. 爆炸与冲击. 2023(07): 146-160 . ![]() | |
12. | 王世晟,鲍文春,韩敬永,孙铁志,张桂勇. 回转体头部通气入水流场演化与载荷特性数值预报研究. 爆炸与冲击. 2022(05): 52-62 . ![]() | |
13. | 张志鸿,彭杨,罗诗琦,姚礼双. 移动网格下黄河下游游荡段二维水沙数值模拟. 水力发电学报. 2022(08): 30-41 . ![]() | |
14. | 鲍嘉伟,李楷,卢正起,苑志江,蒋晓刚. 充气式海上围栏系统中气囊单元对冲击小艇拦截仿真分析. 大连理工大学学报. 2022(06): 609-617 . ![]() | |
15. | 施瑶,刘振鹏,潘光,高兴甫. 航行体开槽包裹式缓冲头帽结构设计及其降载性能. 爆炸与冲击. 2022(12): 95-107 . ![]() |