Volume 41 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
ZHANG Yunzhen, CHENG Miao, RONG Guangyao, WANG Jianping. Numerical investigation on formation mechanism of low-frequency detonation instability[J]. Explosion And Shock Waves, 2021, 41(9): 092101. doi: 10.11883/bzycj-2020-0239
Citation: ZHANG Yunzhen, CHENG Miao, RONG Guangyao, WANG Jianping. Numerical investigation on formation mechanism of low-frequency detonation instability[J]. Explosion And Shock Waves, 2021, 41(9): 092101. doi: 10.11883/bzycj-2020-0239

Numerical investigation on formation mechanism of low-frequency detonation instability

doi: 10.11883/bzycj-2020-0239
  • Received Date: 2020-07-13
  • Rev Recd Date: 2021-01-15
  • Available Online: 2021-08-12
  • Publish Date: 2021-09-14
  • In recent years, rotating detonation engine (RDE) has been wisely studied in the world due to its inherent advantages. In the process of the application of RDE, the stable and reliable performance of the engine is always what researchers pursue. In the process of the research on RDE, a phenomenon called Low Frequency Instability (LFI) has been widely found. But so far, the exact mechanism behind LFI hasn’t been really revealed yet. In this paper, a numerical investigation of LFI was performed. In the numerical study, Euler equation with source terms was chosen as the governing equation, ignoring viscosity, thermal conduction, and mass diffusion. The Strang’s operator splitting method, the fifth order weighted essentially non-oscillatory scheme (WENO) and the second order total variation diminishing (TVD) Runge-Kutta method were used. With the methods mentioned above, the mechanism behind LFI and the whole detailed process of shock waves causing this phenomenon were finally revealed. It is shown that near the inlet wall there exist some reverse shock waves (propagating in the opposite direction to the rotating detonation waves), which will interact with the inlet wall and therefore generate some injet blocking point (IBP) in the fresh gas layer which will make the fresh gas layer periodically irregularly distributed. The irregular fresh gas layer will cause the distribute of the pressure on the detonation front changes periodically. With the positions where the IBPs are generated moving slowly along the inlet wall, the distance between the sampling point and the last IBP will gradually changes, and this will lead to that every time the rotating detonation wave meet the sampling point, the pressure of the place where the detonation front contacts with the inlet wall (and so contacts with the sampling point) is different from the last time. Therefore, the peak pressure at the sampling point oscillates at a low frequency and in another word, a so called low frequency instability is formed.
  • loading
  • [1]
    张宝銔, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2006.
    [2]
    LEE J H S. The detonation phenomenon [M]. Cambridge University Press, 2008.
    [3]
    王健平, 张树杰, 姚松柏. 连续爆轰发动机的研究进展 [J]. 宇航总体技术, 2019, 3(2): 1–11.

    WANG J P, ZHANG S J, YAO S B. Progress of continuous detonation engine [J]. Astronautical Systems Engineering Technology, 2019, 3(2): 1–11.
    [4]
    VOITSEKHOVSKII B. Stationary spin detonation [J]. Soviet Journal of Applied Mechanics and Technical Physics, 1960, 3(3): 157–164.
    [5]
    NLCHOLLS J A, CULLEN R E, RAGLAND K W. Feasibility studies of a rotating detonation wave rocket motor [J]. Journal of Spacecraft and Rockets, 1966, 3(6): 893–898. DOI: 10.2514/3.28557.
    [6]
    BYKOVSKII F A, MITROFANOV V V. Detonation combustion of a has mixture in a cylindrical chamber [J]. Combustion, Explosion and Shock Waves, 1980, 16(5): 570–578. DOI: 10.1007/BF00794937.
    [7]
    BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation in annular combustors [J]. Combustion, Explosion, and Shock Waves, 2005, 41(4): 449–459. DOI: 10.1007/s10573-005-0055-6.
    [8]
    BYKOVSKII F A, ZHDAN S A. Current status of research of continuous cetonation in fuel-air mixtures (review) [J]. Combustion, Explosion, and Shock Waves, 2015, 51(1): 21–35. DOI: 10.1134/S0010508215010025.
    [9]
    FROLOV S M, AKSENOV V S, IVANOV V S, et al. Rocket engine with continuous detonation combustion of the natural gas–oxygen propellant system [J]. Doklady Physical Chemistry, 2018, 478(2): 31–34. DOI: 10.1134/S001250161802001X.
    [10]
    WOLAŃSKI P. Application of the continuous rotating detonation to gas turbine [J]. Applied Mechanics and Materials, 2015, 782: 3–12. DOI: 10.4028/www.scientific.net/AMM.782.3.
    [11]
    HAYASHI A K. Recent experimental and numerical study on disc-type RDEs [C]// AIAA Scitech 2020 Forum. Orlando, FL: American Institute of Aeronautics and Astronautics, 2020. DOI: 10.2514/6.2020-1169.
    [12]
    ISHIHARA K, MATSUOKA K, KASAHARA J, et al. Performance evaluation of a rotating detonation engine with conical-shape tail [C]// 53rd AIAA Aerospace Sciences Meeting. Kissimmee, Florida: American Institute of Aeronautics and Astronautics, 2015. DOI: 10.2514/6.2015-0630.
    [13]
    FOTIA M L, SCHAUER F, KAEMMING T, et al. Experimental study of the performance of a rotating detonation engine with nozzle [J]. Journal of Propulsion and Power, 2016, 32(3): 674–681. DOI: 10.2514/1.B35913.
    [14]
    SCHWER D, CORRIGAN A, TAYLOR B, et al. On reducing feedback pressure in rotating detonation engines [C]// 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Grapevine (Dallas/Ft. Worth Region), Texas: American Institute of Aeronautics and Astronautics, 2013. DOI: 10.2514/6.2013-1178.
    [15]
    王健平, 石天一, 王宇辉, 等. 连续爆轰发动机的实验研究[C]// 第十四届全国激波与激波管学术会议论文集(上册). 安徽黄山: 中国力学学会激波与激波管专业委员会, 2010: 4.
    [16]
    MA Z, ZHANG S, LUAN M, et al. Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine [J]. International Journal of Hydrogen Energy, 2018, 43(39): 18521–18529. DOI: 10.1016/j.ijhydene.2018.08.064.
    [17]
    王超, 刘卫东, 刘世杰, 等. 高总温来流下的连续旋转爆震验证试验 [J]. 推进技术, 2016, 37(3): 578–584. DOI: 10.13675/j.cnki.tjjs.2016.03.023.

    WANG C, LIU W D, LIU S J, et al. Validating experiment of continuous rotating detonation under high total temperature air [J]. Journal of Propulsion Technology, 2016, 37(3): 578–584. DOI: 10.13675/j.cnki.tjjs.2016.03.023.
    [18]
    WANG Y H, WANG J P. Rotating detonation instabilities in hydrogen-oxygen mixture [J]. Applied Mechanics and Materials, 2015, 709: 56–62. DOI: 10.4028/www.scientific.net/AMM.709.56.
    [19]
    ANAND V, ST GEORGE A, DRISCOLL R, et al. Statistical treatment of wave instability in rotating detonation combustors [C]// American Institute of Aeronautics and Astronautics. 53rd AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 2015. DOI: 10.2514/6.2015-1103.
    [20]
    ANAND V, ST GEORGE A, DRISCOLL R, et al. Characterization of instabilities in a rotating detonation combustor [J]. International Journal of Hydrogen Energy, 2015, 40(46): 16649–16659. DOI: 10.1016/j.ijhydene.2015.09.046.
    [21]
    ANAND V, GUTMARK E. Types of low frequency instabilities in rotating detonation combustors [C]// Active Flow and Combustion Control 2018. Cham: Springer International Publishing, 2019: 197–213. DOI: 10.1007/978-3-319-98177-2_13.
    [22]
    ZHANG S, YAO S, LUAN M, et al. Effects of injection conditions on the stability of rotating detonation waves [J]. Shock Waves, 2018, 28(5): 1079–1087. DOI: 10.1007/s00193-018-0854-9.
    [23]
    武丹, 王健平. 粘性及热传导对于爆轰波的影响 [J]. 应用力学学报, 2012, 29(6): 630–635, 769.

    WU D, WANG J P. Influences of viscosity and thermal conductivity on detonation waves [J]. Chinese Journal of Applied Mechanics, 2012, 29(6): 630–635, 769.
    [24]
    李廷文, 王健平, 叶朝晖. 基元化学反应一维爆轰波的数值模拟 [J]. 空气动力学学报, 2007(2): 199–204. DOI: 10.3969/j.issn.0258-1825.2007.02.011.

    LI T W, WANG J P, YE C H. Numerical simulation of one-dimensional detonation with detailed chemical reaction model [J]. Acta Aerodynamica Sinica, 2007(2): 199–204. DOI: 10.3969/j.issn.0258-1825.2007.02.011.
    [25]
    刘君, 张涵信, 高树椿. 一种新型的计算化学非平衡流动的解耦方法 [J]. 国防科技大学学报, 2000(5): 19–22. DOI: 10.3969/j.issn.1001-2486.2000.05.005.

    LIU J, ZHANG H X, GAO S C. A new uncoupled method for numerical simulation of non-equilibrium flow [J]. Journal of National University of Defense Technology, 2000(5): 19–22. DOI: 10.3969/j.issn.1001-2486.2000.05.005.
    [26]
    HISHIDA M, FUJIWARA T, WOLANSKI P. Fundamentals of rotating detonations [J]. Shock Waves, 2009, 19(1): 1–10. DOI: 10.1007/s00193-008-0178-2.
    [27]
    ATHMANATHAN V, BRAUN J, AYERS Z, et al. Detonation structure evolution in an optically-accessible non-premixed H2 -air RDC using MHz rate imaging [C]// AIAA Scitech 2020 Forum. Orlando, Florida: American Institute of Aeronautics and Astronautics, 2020. DOI: 10.2514/6.2020-1178.
    [28]
    HADJADJ A, KUDRYAVTSEV A. Computation and flow visualization in high-speed aerodynamics [J]. Journal of Turbulence, 2005, 6: N16. DOI: 10.1080/14685240500209775.
    [29]
    CHEN Y, LIU X, WANG J. Influences of separate injectors on rotating detonation engines [C]// 2018 Joint Propulsion Conference. Cincinnati, Ohio: American Institute of Aeronautics and Astronautics, 2018. DOI: 10.2514/6.2018-4785.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (617) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return