Citation: | FAN Zhiqiang, HE Tianming, LIU Yingbin, SUO Tao, XU Peng. Breaking mechanisms of brittle hollow particles under impact loading[J]. Explosion And Shock Waves, 2021, 41(7): 073302. doi: 10.11883/bzycj-2020-0247 |
[1] |
GOEL M D, MONDAL D P, YADAV M S, et al. Effect of strain rate and relative density on compressive deformation behavior of aluminum cenosphere syntactic foam [J]. Materials Science and Engineering: A, 2014, 590: 406–415. DOI: 10.1016/j.msea.2013.10.048.
|
[2] |
FAN Z Q, MIAO Y Z, WANG Z Z, et al. Effect of the cenospheres size and internally lateral constraints on dynamic compressive behavior of fly ash cenospheres polyurethane syntactic foams [J]. Composites Part B: Engineering, 2019, 171: 329–338. DOI: 10.1016/j.compositesb.2019.05.008.
|
[3] |
赵凯, 罗文超, 李煦阳, 等. 人防工程中空壳颗粒材料抗爆性能试验研究 [J]. 实验力学, 2012, 27(2): 189–194.
ZHAO K, LUO W C, LI X Y, et al. Experimental study of explosion load bearing performance of Shelly cellular material used in civil defense engineering [J]. Journal of Experimental Mechanics, 2012, 27(2): 189–194.
|
[4] |
孙晓旺, 李永池, 叶中豹, 等. 新型空壳颗粒材料在人防工程中应用的实验研究 [J]. 爆炸与冲击, 2017, 37(4): 643–648. DOI: 10.11883/1001-1455(2017)04-0643-06.
SUN X W, LI Y C, YE Z B, et al. Experimental study of a novel shelly cellular material used in civil defense engineering [J]. Explosion and Shock Waves, 2017, 37(4): 643–648. DOI: 10.11883/1001-1455(2017)04-0643-06.
|
[5] |
RAHMÉ P, BOUVET C, RIVALLANT S, et al. Experimental investigation of impact on composite laminates with protective layers [J]. Composites Science and Technology, 2012, 72(2): 182–189. DOI: 10.1016/j.compscitech.2011.10.015.
|
[6] |
OMIDVAR M, ISKANDER M, BLESS S. Stress-strain behavior of sand at high strain rates [J]. International Journal of Impact Engineering, 2012, 49: 192–213. DOI: 10.1016/j.ijimpeng.2012.03.004.
|
[7] |
HUANG J Y, XU S L, HU S S. Influence of particle breakage on the dynamic compression responses of brittle granular materials [J]. Mechanics of Materials, 2014, 68: 15–28. DOI: 10.1016/j.mechmat.2013.08.002.
|
[8] |
HUANG J, XU S, HU S. Effects of grain size and gradation on the dynamic responses of quartz sands [J]. International Journal of Impact Engineering, 2013, 59: 1–10. DOI: 10.1016/j.ijimpeng.2013.03.007.
|
[9] |
王壮壮, 徐鹏, 范志强, 等. 漂珠颗粒材料静动态力学性能与破碎机理研究 [J]. 爆炸与冲击, 2020, 40(6): 063101. DOI: 10.11883/bzycj-2019-0337.
WANG Z Z, XU P, FAN Z Q, et al. Study on static and dynamic mechanical properties and fracture mechanism of cenospheres [J]. Explosion and Shock Waves, 2020, 40(6): 063101. DOI: 10.11883/bzycj-2019-0337.
|
[10] |
CROOM B P, JIN H, MILLS B, et al. Damage mechanisms in elastomeric foam composites: multiscale X-ray computed tomography and finite element analyses [J]. Composites Science and Technology, 2019, 169: 195–202. DOI: 10.1016/j.compscitech.2018.11.025.
|
[11] |
MONDAL D P, JHA N, GULL B, et al. Microarchitecture and compressive deformation behaviour of Al-alloy (LM13)-cenosphere hybrid Al-foam prepared using CaCO3 as foaming agent [J]. Materials Science and Engineering: A, 2013, 560: 601–610. DOI: 10.1016/j.msea.2012.10.003.
|
[12] |
HOLOMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjective to large strains, high strain rates, and high pressure [C] // Proceedings of the 14th International Symposium on Ballistics. USA: American Defense Preparedness Association, 1993: 591−600.
|
[13] |
巫绪涛, 李耀, 李和平. 混凝土HJC本构模型参数的研究 [J]. 应用力学学报, 2010, 27(2): 340–344.
WU X T, LI Y, LI H P. Research on the material constants of the HJC dynamic constitutive model for concrete [J]. Chinese Journal of Applied Mechanics, 2010, 27(2): 340–344.
|
[14] |
任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定 [J]. 振动与冲击, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.14.002.
REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete [J]. Journal of Vibration and Shock, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.14.002.
|
[15] |
ZHENG Z J, YU J L, LI J R. Dynamic crushing of 2D cellular structures: a finite element study [J]. International Journal of Impact Engineering, 2005, 32(1−4): 650–664. DOI: 10.1016/j.ijimpeng.2005.05.007.
|
[16] |
BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016.
|
[17] |
RAMESH K T, HOGAN J D, KIMBERLEY J, et al. A review of mechanisms and models for dynamic failure, strength, and fragmentation [J]. Planetary and Space Science, 2015, 107: 10–23. DOI: 10.1016/j.pss.2014.11.010.
|
[18] |
HARDIN B O. Crushing of soil particles [J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177–1192. DOI: 10.1061/(ASCE)0733-9410(1985)111: 10(1177).
|
[1] | WANG Wu, YANG Jun, WANG Anbao, LI Shengjie. Resistance equation of projectile penetrating into reinforced concrete shield[J]. Explosion And Shock Waves, 2025, 45(3): 033301. doi: 10.11883/bzycj-2024-0217 |
[2] | CHENG Yuehua, WU Hao, CEN Guohua, ZHANG Yu. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads[J]. Explosion And Shock Waves, 2025, 45(1): 013301. doi: 10.11883/bzycj-2024-0061 |
[3] | NIE Xiaodong, WU Xiangyun, LONG Zhilin, YI Zhi, JI Nan, GUO Ruiqi. Research on penetration depth of projectiles into ultra-high performance concrete targets[J]. Explosion And Shock Waves, 2024, 44(2): 023302. doi: 10.11883/bzycj-2022-0282 |
[4] | WANG Mafa, LI Junling, LIU Sen. The influence of density gradient of driving gas on projectile launching velocity[J]. Explosion And Shock Waves, 2023, 43(4): 042202. doi: 10.11883/bzycj-2022-0209 |
[5] | MA Sizhou, LIU Kewei, YANG Jiacai, LI Xudong, GUO Tengfei. Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress[J]. Explosion And Shock Waves, 2023, 43(10): 105201. doi: 10.11883/bzycj-2023-0151 |
[6] | WANG Cunhong, CAO Yuwu, CHEN Jin, KONG Lin, SUN Xingyun. Research progress in mechanical behaviors of metallic energetic materials[J]. Explosion And Shock Waves, 2023, 43(7): 071101. doi: 10.11883/bzycj-2022-0251 |
[7] | SU Qiong, CHENG Yuehua, WU Hao. Flexural damage assessment for UHPC panels under blast loadings[J]. Explosion And Shock Waves, 2023, 43(12): 125103. doi: 10.11883/bzycj-2023-0160 |
[8] | LI Kewu, HU Qiushi, ZHENG Xianxu, LI Tao, FU Hua, TANG Wei. A theoretical model of PBXs’ tensile strength based on meso-structure parameters[J]. Explosion And Shock Waves, 2023, 43(1): 013106. doi: 10.11883/bzycj-2021-0514 |
[9] | SONG Shuai, DU Chuang, LI Yanyan. Determination and application of the HJC constitutive model parameters for ultra-high performance concrete[J]. Explosion And Shock Waves, 2023, 43(5): 053102. doi: 10.11883/bzycj-2022-0343 |
[10] | LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294 |
[11] | CHEN Ya, TAN Chao, GUO Yazhou. Comparative study of numerical simulations of projectile penetration into metal targets[J]. Explosion And Shock Waves, 2022, 42(4): 044201. doi: 10.11883/bzycj-2021-0125 |
[12] | CHENG Yuehua, WU Hao, TAN Keke, JIANG Pengfei, ZHANG Dong, FANG Qin. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets[J]. Explosion And Shock Waves, 2022, 42(5): 053302. doi: 10.11883/bzycj-2021-0278 |
[13] | WEI Jiuqi, LI Lei, WANG Shihe, ZHANG Chunxiao, CAO Shaohua, GAO Jie. Experimental study on local damage effect of ultra-high performance concrete slabs under contact explosion[J]. Explosion And Shock Waves, 2022, 42(4): 042201. doi: 10.11883/bzycj-2021-0174 |
[14] | WANG Yinan, YAO Xiongliang, WANG Zhi, YANG Nana. Different failure modes during the high-velocity penetration on the ship plate structure through material point method[J]. Explosion And Shock Waves, 2021, 41(10): 103301. doi: 10.11883/bzycj-2020-0134 |
[15] | CHEN Beibei, ZHANG Xianfeng, DENG Jiajie, ZHANG Jian, BAO Kuo, TAN Mengting. Residual penetration depth of a projectile into YAG transparent ceramic/glass[J]. Explosion And Shock Waves, 2020, 40(8): 083301. doi: 10.11883/bzycj-2019-0372 |
[16] | PENG Yong, LU Fangyun, FANG Qin, WU Hao, LI Xiangyu. Analyses of the size effect for projectile penetrations into concrete targets[J]. Explosion And Shock Waves, 2019, 39(11): 113301. doi: 10.11883/bzycj-2018-0402 |
[17] | DUAN Zhuoping, LI Shurui, MA Zhaofang, OU Zhuocheng, HUANG Fenglei. Analytical model for attitude deflection of rigid projectile during oblique perforation of concrete targets[J]. Explosion And Shock Waves, 2019, 39(6): 063302. doi: 10.11883/bzycj-2018-0411 |
[18] | Xu Xingchun, Gao Xinbao, Li Tianpeng, Zhang Junkun. Theoretical model and experiment of radius variation of initial smoke cloud[J]. Explosion And Shock Waves, 2016, 36(2): 183-188. doi: 10.11883/1001-1455(2016)02-0183-06 |
[19] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[20] | LI Hai-tao, ZHU Xi, WANG Lu, ZHANG Zhen-hua. Asimplifiedtheorymodelforbulkmovementofship-likebeams subjectedtosphericalshockwaves[J]. Explosion And Shock Waves, 2010, 30(1): 85-90. doi: 10.11883/1001-1455(2010)01-0085-06 |
1. | 刘国秋,蔡承霖,孙宇航,郑权,翁春生. 基于弯型预爆管的煤油燃料旋转爆轰发动机起爆实验研究. 弹道学报. 2024(01): 26-34+56 . ![]() | |
2. | 舒晨,顾福涛,陈斌,晏成龙,仝毅恒,林伟. 煤油燃料宽域冲压旋转爆震燃烧特性. 气体物理. 2024(02): 21-32 . ![]() | |
3. | 杨帆,姜春雪,王宇辉,李世全,王健平,张国庆. 煤油液滴直径对两相旋转爆轰发动机流场的影响. 爆炸与冲击. 2023(02): 3-17 . ![]() | |
4. | 刘思远,汪洋,李真珍,滕宏辉,田诚. 中心锥喷管喉道比参数对旋转爆轰燃烧影响的数值研究. 推进技术. 2023(09): 120-131 . ![]() | |
5. | 吴敏宣,白桥栋,翁春生,孟豪龙,韩家祥,张世健,王研艳. C_2H_4/CH_4/H_2混合气旋转爆轰波传播特性数值模拟研究. 推进技术. 2022(11): 303-314 . ![]() |