Volume 41 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
ZHANG Pengzhou, DONG Qi, YANG Sha. Influence of blast loading parameters on elastic dynamic response of an infinite-length cylindrical shell[J]. Explosion And Shock Waves, 2021, 41(6): 063101. doi: 10.11883/bzycj-2020-0269
Citation: ZHANG Pengzhou, DONG Qi, YANG Sha. Influence of blast loading parameters on elastic dynamic response of an infinite-length cylindrical shell[J]. Explosion And Shock Waves, 2021, 41(6): 063101. doi: 10.11883/bzycj-2020-0269

Influence of blast loading parameters on elastic dynamic response of an infinite-length cylindrical shell

doi: 10.11883/bzycj-2020-0269
  • Received Date: 2020-08-07
  • Rev Recd Date: 2021-01-21
  • Available Online: 2021-06-10
  • Publish Date: 2021-06-05
  • The elastic dynamic response of an infinite-length cylindrical shell (equivalent plane strain ring) was analyzed by using the single degree of freedom (SDOF) model under blast loading with triangular pulse load and quasi-static pressure load. The analytical solutions of radial displacement response and amplitude of elastic response under quasi-hydrostatic load were obtained. Based on the analytical solution, the influence of load pressure and the moment of the load boundary point (i.e. the time instant at which the triangular pulse load ends and the quasi-static pressure load begins) on the maximum radial displacement and the amplitude of elastic response in quasi-static pressure stage was analyzed by the control variable method, and the influence of explosion load on the structural response was further studied. The influence of blast loading on the elastic dynamic response of the infinite-length cylindrical shell was studied through the ratio of quasi-static pressure amplitude to triangular pulse peak value and the moment of the load boundary point, combined with the breathing vibration frequency of the structure. It is found that there is a critical time, when the moment of the load boundary point is earlier than the critical moment, the maximum value of radial displacement appears in the quasi-static pressure stage; when the moment of the load boundary point is later than the critical moment, the maximum value of radial displacement can be conveniently determined according to the obtained partition diagram of load stage. Based on the analysis of the above analytical solution, the monotonic zonal diagram of the amplitude variation in quasi-hydrostatic stage caused by the triangular pulse load peak value and quasi-hydrostatic load peak value has obtained, which is convenient to distinguish the increasing and decreasing trend of the amplitude in quasi-hydrostatic stage caused by the load pressure variation. By obtaining the influence of explosion pressure load on the structural response, the current study may provide some guidance for the design of explosion vessels and the basic research of structural protection.
  • loading
  • [1]
    赵士达. 爆炸容器 [J]. 爆炸与冲击, 1989, 9(1): 85–96.

    ZHAO S D. Blast chamber [J]. Explosion and Shock Waves, 1989, 9(1): 85–96.
    [2]
    胡宏伟, 肖川, 李丽, 等. 有限空间炸药装药内爆炸威力的评估方法综述 [J]. 火炸药学报, 2013, 36(4): 1–6. DOI: 10.3969/j.issn.1007-7812.2013.04.001.

    HU H W, XIAO C, LI L, et al. Review on evaluation methods of blast power in confined space [J]. Chinese Journal of Explosives and Propellants, 2013, 36(4): 1–6. DOI: 10.3969/j.issn.1007-7812.2013.04.001.
    [3]
    BAKER W E. The elastic-plastic response of thin spherical shells to internal blast loading [J]. Journal of Applied Mechanics, 1960, 27(1): 139–144. DOI: 10.1115/1.3643888.
    [4]
    KO W L, PENNICK H G, BAKER W E. Elasto-plastic response of a multi-layered spherical vessel to internal blast loading [J]. International Journal of Solids and Structures, 1977, 13(6): 503–514. DOI: 10.1016/0020-7683(77)90024-5.
    [5]
    LI Q M, DONG Q, ZHENG J Y. Counter-intuitive breathing mode response of an elastic-plastic circular ring subjected to axisymmetric internal pressure pulse [J]. International Journal of Impact Engineering, 2008, 35(8): 784–794. DOI: 10.1016/j.ijimpeng.2007.07.002.
    [6]
    DONG Q, LI Q M, ZHENG J Y. Further study on counter-intuitive response of single-degree-of-freedom structures [J]. International Journal of Impact Engineering, 2011, 38(5): 305–308. DOI: 10.1016/j.ijimpeng.2010.10.033.
    [7]
    胡八一, 柏劲松, 刘大敏, 等. 爆炸容器的工程设计方法及其应用 [J]. 压力容器, 2000, 17(2): 39–41. DOI: 10.3969/j.issn.1001-4837.2000.02.011.

    HU B Y, BAI J S, LIU D M, et al. The engineering design method of explosion-containment vessel and its application [J]. Pressure Vessel Technology, 2000, 17(2): 39–41. DOI: 10.3969/j.issn.1001-4837.2000.02.011.
    [8]
    胡八一, 刘大敏, 柏劲松, 等. 脉冲载荷下球形爆炸容器的弹性响应 [J]. 振动与冲击, 1998, 17(3): 22–26, 90−91. DOI: 10.13465/j.cnki.jvs.1998.03.006.

    HU B Y, LIU D M, BAI J S, et al. Elastic response of spherical containment vessel to impulsive loads [J]. Journal of Vibration and Shock, 1998, 17(3): 22–26, 90−91. DOI: 10.13465/j.cnki.jvs.1998.03.006.
    [9]
    孙琦, 董奇, 杨沙, 等. 内爆炸准静态压力对球形容器弹性动态响应的影响 [J]. 含能材料, 2019, 27(8): 698–707. DOI: 10.11943/CJEM2019026.

    SUN Q, DONG Q, YANG S, et al. Effects of quasi-static pressure on dynamic elastic response of spherical vessels under internal blast [J]. Chinese Journal of Energetic Materials, 2019, 27(8): 698–707. DOI: 10.11943/CJEM2019026.
    [10]
    孙琦. 壳体在内爆炸载荷作用下的动态响应与力学模型研究[D]. 绵阳: 中国工程物理研究院, 2019: 12−22.
    [11]
    孙琦, 董奇, 杨沙, 等. 内爆炸准静态压力对球形容器弹塑性动态响应的影响 [J]. 含能材料, 2020, 28(1): 25–31. DOI: 10.11943/CJEM2019078.

    SUN Q, DONG Q, YANG S, et al. Effects of quasi-static pressure on dynamic elastic-plastic response of spherical vessels under internal blast [J]. Chinese Journal of Energetic Materials, 2020, 28(1): 25–31. DOI: 10.11943/CJEM2019078.
    [12]
    FELDGUN V R, KARINSKI Y S, EDRI I, et al. Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures [J]. International Journal of Impact Engineering, 2016, 90: 46–60. DOI: 10.1016/j.ijimpeng.2015.12.001.
    [13]
    张玉磊, 苏建军, 李芝绒, 等. TNT内爆炸准静态压力特性 [J]. 爆炸与冲击, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.

    ZHANG Y L, SU J J, LI Z R, et al. Quasi-static pressure characteristic of TNT’s internal explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.
    [14]
    刘文祥, 张德志, 钟方平, 等. 球形爆炸容器内炸药爆炸形成的准静态气体压力 [J]. 爆炸与冲击, 2018, 38(5): 1045–1050. DOI: 10.11883/bzycj-2017-0056.

    LIU W X, ZHANG D Z, ZHONG F P, et al. Quasi-static gas pressure generated by explosive charge blasting in a spherical explosion containment vessel [J]. Explosion and Shock Waves, 2018, 38(5): 1045–1050. DOI: 10.11883/bzycj-2017-0056.
    [15]
    LI Q M, DONG Q, ZHENG J Y. Strain growth of the in-plane response in an elastic cylindrical shell [J]. International Journal of Impact Engineering, 2008, 35(10): 1130–1153. DOI: 10.1016/j.ijimpeng.2008.01.007.
    [16]
    DONG Q, LI Q, ZHENG J Y. Strain growth in a finite-length cylindrical shell under internal pressure pulse [J]. Journal of Pressure Vessel Technology, 2017, 139(2): 021213. DOI: 10.1115/1.4035696.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (464) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return