Volume 41 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
WANG Yiwen, ZHENG Cheng, WU Weiguo. On slamming load and structural response of a flexible wedge via analytical methods and numerical simulations[J]. Explosion And Shock Waves, 2021, 41(11): 113303. doi: 10.11883/bzycj-2020-0276
Citation: WANG Yiwen, ZHENG Cheng, WU Weiguo. On slamming load and structural response of a flexible wedge via analytical methods and numerical simulations[J]. Explosion And Shock Waves, 2021, 41(11): 113303. doi: 10.11883/bzycj-2020-0276

On slamming load and structural response of a flexible wedge via analytical methods and numerical simulations

doi: 10.11883/bzycj-2020-0276
  • Received Date: 2020-08-12
  • Rev Recd Date: 2021-08-10
  • Available Online: 2021-11-01
  • Publish Date: 2021-11-23
  • The slamming load and structural response of flexible wedges were investigated by both analytical methods and numerical simulations based on the ALE (arbitrary Lagrangian-Eulerian) coupled method. The cases with various boundary conditions, impact velocities, thicknesses and deadrise angles were simulated and the corresponding slamming loads and the structural responses were discussed as well. The slamming load and the structural response are susceptible to the variation of the deadrise angle. To increase the deadrise angles is an effective way to ensure the structural strength concerning about the impact load. With the increase of the deadrise angle from 10º to 30º, the dimensionless slamming load decreased to 6.9% and the structural response decreased to 6.5%. The hydroelastic effects of the response of the flexible structure under slamming load can be evaluated by the factor ${ {R_{\text{F}}} = {C_{\text{B}}}\tan \beta \sqrt {EI/(\rho {L^3})} /v }$ which combining with boundary condition, deadrise angle and rigidity of the structure. If the RF>1.71, the hydroelastic analytical method is an efficient and effective way to evaluate the response of the flexible structure under slamming load.
  • loading
  • [1]
    KVALSVOLD J, FALTINSEN O M. Hydroelastic modeling of wet deck slamming on multihull vessels [J]. Journal of Ship Research, 1995, 39(3): 225–239. DOI: 10.5957/jsr.1995.39.3.225.
    [2]
    FALTINSEN O M, KVÅLSVOLD J, AARSNES J V. Wave impact on a horizontal elastic plate [J]. Journal of Marine Science and Technology, 1997, 2(2): 87–100. DOI: 10.1007/BF02491523.
    [3]
    KHABAKHPASHEVA T I, KOROBKIN A A. Elastic wedge impact onto a liquid surface: Wagner’s solution and approximate models [J]. Journal of Fluids and Structures, 2013, 36: 32–49. DOI: 10.1016/j.jfluidstructs.2012.08.004.
    [4]
    SHAMS A, PORFIRI M. Treatment of hydroelastic impact of flexible wedges [J]. Journal of Fluids and Structures, 2015, 57: 229–246. DOI: 10.1016/j.jfluidstructs.2015.06.017.
    [5]
    LU C H, HE Y S, WU G X. Coupled analysis of nonlinear interaction between fluid and structure during impact [J]. Journal of Fluids and Structures, 2000, 14(1): 127–146. DOI: 10.1006/jfls.1999.0257.
    [6]
    STENIUS I, ROSÉN A, KUTTENKEULER J. Hydroelastic interaction in panel-water impacts of high-speed craft [J]. Ocean Engineering, 2011, 38(2−3): 371–381. DOI: 10.1016/j.oceaneng.2010.11.010.
    [7]
    PANCIROLI R, ABRATE S, MINAK G, et al. Hydroelasticity in water-entry problems: comparison between experimental and SPH results [J]. Composite Structures, 2012, 94(2): 532–539. DOI: 10.1016/j.compstruct.2011.08.016.
    [8]
    PANCIROLI R. Water entry of flexible wedges: some issues on the FSI phenomena [J]. Applied Ocean Research, 2013, 39: 72–74. DOI: 10.1016/j.apor.2012.10.010.
    [9]
    HASSOON O H, TARFAOUI M, ALAOUI A E M, et al. Experimental and numerical investigation on the dynamic response of sandwich composite panels under hydrodynamic slamming loads [J]. Composite Structures, 2017, 178: 297–307. DOI: 10.1016/j.compstruct.2017.07.014.
    [10]
    HASSOON O H, TARFAOUI M, ALAOUI A E M, et al. Mechanical behavior of composite structures subjected to constant slamming impact velocity: an experimental and numerical investigation [J]. International Journal of Mechanical Sciences, 2018, 144: 618–627. DOI: 10.1016/j.ijmecsci.2018.05.035.
    [11]
    HASSOON O H, TARFAOUI M, ALAOUI A E M, et al. Mechanical performance evaluation of sandwich panels exposed to slamming impact: comparison between experimental and SPH results [J]. Composite Structures, 2019, 220: 776–783. DOI: 10.1016/j.compstruct.2019.04.051.
    [12]
    KOROBKIN A. Analytical models of water impact [J]. European Journal of Applied Mathematics, 2004, 15(6): 821–838. DOI: 10.1017/S0956792504005765.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article Metrics

    Article views (461) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return