Volume 41 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
ZHANG Mingtao, WANG Wei, WANG Qizhi, ZHANG Siyi. Dynamic failure process and strain-damage evolution law of sandstone based on SHPB experiments[J]. Explosion And Shock Waves, 2021, 41(9): 093102. doi: 10.11883/bzycj-2020-0288
Citation: ZHANG Mingtao, WANG Wei, WANG Qizhi, ZHANG Siyi. Dynamic failure process and strain-damage evolution law of sandstone based on SHPB experiments[J]. Explosion And Shock Waves, 2021, 41(9): 093102. doi: 10.11883/bzycj-2020-0288

Dynamic failure process and strain-damage evolution law of sandstone based on SHPB experiments

doi: 10.11883/bzycj-2020-0288
  • Received Date: 2020-08-24
  • Rev Recd Date: 2020-11-14
  • Available Online: 2021-08-16
  • Publish Date: 2021-09-14
  • In order to study the failure characteristics and damage evolution law of sandstone type uranium ore by blasting, the SHPB experimental system with strain control loop is used to conduct dynamic impact experiment on sandstone samples under controlled strain conditions. Combined with the wave velocity experiment and CT scanning experiments, the whole failure process, crack distribution and strain damage evolution law of sandstone samples are analyzed and studied. The experimental results show that the sandstone sample will suddenly appear obvious overall failure when the strain value exceeds 0.008 3 under impact load, and that the overall failure form is approximately biconical and its failure mode is shear-tension mixed failure. With the increase of strain, the generation and propagation of cracks can be roughly divided into crack free stage (0−0.003 3), microcrack initiation stage (0.003 3−0.008 3) and crack through stage (0.008 3−0.009 9). The quantitative relationship between strain and damage is established from macroscopic and microscopic aspects. The growth trend of damage variable with strain can be roughly divided into two stages, i.e. the smooth development area (0−0.008 3) and the rapid growth area (0.008 3−0.011 5). The damage variable does not increase linearly with the increase of strain, but the damage degree increases sharply when the strain value exceeds the strain damage threshold (0.008 3).
  • loading
  • [1]
    苏学斌, 杜志明. 我国地浸采铀工艺技术发展现状与展望 [J]. 中国矿业, 2012, 21(9): 79–83. DOI: 10.3969/j.issn.1004-4051.2012.09.021.

    SU X B, DU Z M. Development and prospect of China uranium in-situ leaching technology [J]. China Mining Magazine, 2012, 21(9): 79–83. DOI: 10.3969/j.issn.1004-4051.2012.09.021.
    [2]
    梁卫国, 赵阳升, 徐素国, 等. 原位溶浸采矿理论研究 [J]. 太原理工大学学报, 2012, 43(3): 382–387. DOI: 10.3969/j.issn.1007-9432.2012.03.030.

    LIANG W G, ZHAO Y S, XU S G, et al. Theoretical study of in-situ solution mining [J]. Journal of Taiyuan University of Technology, 2012, 43(3): 382–387. DOI: 10.3969/j.issn.1007-9432.2012.03.030.
    [3]
    王伟, 李小春. 低渗透砂岩型铀矿床增渗方法及其可行性研究 [J]. 岩土力学, 2009, 30(8): 2309–2314. DOI: 10.16285/j.rsm.2009.08.002.

    WANG W, LI X C. Study of enhanced permeability methods and their feasibility in low-permeability sandstone-type uranium deposit [J]. Rock and Soil Mechanics, 2009, 30(8): 2309–2314. DOI: 10.16285/j.rsm.2009.08.002.
    [4]
    LUNDBERG B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1976, 13(6): 187–197. DOI: 10.1016/0148-9062(76)91285-7.
    [5]
    宫凤强, 李夕兵, 刘希灵. 三维动静组合加载下岩石力学特性试验初探 [J]. 岩石力学与工程学报, 2011, 30(6): 1179–1190.

    GONG F Q, LI X B, LIU X L. Preliminary experimental study of characteristics of rock subjected to 3D coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1179–1190.
    [6]
    宫凤强, 李夕兵, 刘希灵. 三轴SHPB加载下砂岩力学特性及破坏模式试验研究 [J]. 振动与冲击, 2012, 31(8): 29–32. DOI: 10.13465/j.cnki.jvs.2012.08.006.

    GONG F Q, LI X B, LIU X L, et al. Tests for sandstone mechnical properties and failure model under triaxial SHPB loading [J]. Journal of Vibration and Shock, 2012, 31(8): 29–32. DOI: 10.13465/j.cnki.jvs.2012.08.006.
    [7]
    金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.

    JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
    [8]
    刘希灵, 崔佳慧, 王金鹏, 等. 不同应变率下岩石冲击破坏的声发射特性研究 [J]. 爆破, 2018, 35(1): 1–8. DOI: 10.3963/j.issn.1001-487X.2018.01.001.

    LIU X L, CUI J H, WANG J P, et al. Acoustic emission characteristics analysis of rock under impact loading of different strain rate [J]. Blasting, 2018, 35(1): 1–8. DOI: 10.3963/j.issn.1001-487X.2018.01.001.
    [9]
    高文学. 岩石动态响应特性及损伤模型研究[D]. 北京: 北京理工大学, 1999.
    [10]
    LIU L Q, KATSABANIS P D. Development of a continuum damage model for blasting analysis [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2): 217–231. DOI: 10.1016/S0148-9062(96)00041-1.
    [11]
    RAYNAUD S, FABRE D, MAZEROLLE F, et al. Analysis of the internal structure of rocks and characterisation of mechanical deformation by a non-destructive method: X-ray tomodensitometry [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(6): 293–294. DOI: 10.1016/0148-9062(89)91486-1.
    [12]
    KAWAKATA H, CHO A, KIYAMA T, et al. Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan [J]. Tectonophysics, 1999, 313(3): 293–305. DOI: 10.1016/S0040-51(99)00205-X.
    [13]
    KAWAKATA H, CHO A, YANAGIDANI T, et al. Gross structure of a fault during its formation process in Westerly granite [J]. Tectonophysics, 2000, 323(1−2): 61–76. DOI: 10.1016/S0040-1951(00)00088-3.
    [14]
    HUANG S, XIA K, ZHENG H. Observation of microscopic damage accumulation in brittle solids subjected to dynamic compressive loading [J]. Review of Scientific Instruments, 2013, 84(9): 093903. DOI: 10.1063/1.4821497.
    [15]
    王洪亮, 范鹏贤, 王明洋, 等. 应变率对红砂岩渐进破坏过程和特征应力的影响 [J]. 岩土力学, 2011, 32(5): 1340–1346. DOI: 10.16285/j.rsm.2011.05.008.

    WANG H L, FAN P X, WANG M Y, et al. Influence of strain rate on progressive failure process and characteristic stresses of red sandstone [J]. Rock and Soil Mechanics, 2011, 32(5): 1340–1346. DOI: 10.16285/j.rsm.2011.05.008.
    [16]
    金解放. 静载荷与循环冲击组合作用下岩石动态力学特性研究[D]. 长沙: 中南大学, 2012: 13−82. DOI: 10.7666/d.y2198002.
    [17]
    杨军, 高文学. 岩石冲击损伤特性的声波测试研究 [J]. 黑龙江矿业学院学报, 2000, 10(1): 50–53. DOI: 10.3969/j.issn.1671-0118.2000.01.015.

    YANG J, GAO W X. Experimental study on damage properties of rock under dynamic loading [J]. Journal of Helongjiang Mining Institute, 2000, 10(1): 50–53. DOI: 10.3969/j.issn.1671-0118.2000.01.015.
    [18]
    KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(4): A178. DOI: 10.1016/0148-9062(88)91668-3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(3)

    Article Metrics

    Article views (540) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return