Citation: | MA Shengguo, WANG Zhihua. Dynamic mechanical properties and constitutive relations of CoCrFeNiAlx high entropy alloys[J]. Explosion And Shock Waves, 2021, 41(11): 111101. doi: 10.11883/bzycj-2020-0293 |
[1] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299–303. DOI: 10.1002/adem.200300567.
|
[2] |
CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering A, 2004, 375−377: 213–218. DOI: 10.1016/j.msea.2003.10.257.
|
[3] |
ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys [J]. Progress in Materials Science, 2014, 61(8): 1–93. DOI: 10.1016/j.pmatsci.2013.10.001.
|
[4] |
LI Z Z, ZHAO S T, RITCHIE R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Progress in Materials Science, 2019, 102: 296–345. DOI: 10.1016/j.pmatsci.2018.12.003.
|
[5] |
张勇, 陈明彪, 杨潇. 先进高熵合金技术 [M]. 北京: 化学工业出版社, 2019.
|
[6] |
SHAHMIR H, HE J Y, LU Z P, KAWASAKI M, et al. Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion [J]. Materials Science and Engineering A, 2017, 685: 342–348. DOI: 10.1016/j.msea.2017.01.016.
|
[7] |
SONI V, SENKOV O N, GWALANI B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy [J]. Scientific Reports, 2018, 8: 8816. DOI: 10.1038/s41598-018-27144-3.
|
[8] |
LIU J P, GUO X X, LIN Q Y, et al. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures [J]. Science China Materials, 2019, 62: 853–863. DOI: 10.1007/s40843-018-9373-y.
|
[9] |
ZHAO D, FANG H Q, JIN T, et al. Constitutive modeling and strain hardening of CoCrFeNiAl x high-entropy alloys [J]. Materials Research Express, 2019, 6: 1065h3. DOI: 10.1088/2053-1591/ab42e8.
|
[10] |
CHEN C L, SUPRIANTO. Microstructure and mechanical properties of AlCuNiFeCr high entropy alloy coatings by mechanical alloying [J]. Surface and Coating Technology, 2020, 386: 125443. DOI: 10.1016/j.surfcoat.2020.125443.
|
[11] |
VARVENNE C, CURTIN W A. Strengthening of high entropy alloys by dilute solute additions: CoCrFeNiAl x and CoCrFeNiMnAl x alloys [J]. Scripta Materialia, 2017, 138: 92–95. DOI: 10.1016/j.scriptamat.2017.05.035.
|
[12] |
LI D Y, ZHANG Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures [J]. Intermetallics, 2016, 70: 24–28. DOI: 10.1016/j.intermet.2015.11.002.
|
[13] |
LI Z, ZHAO S, DIAO H, et al. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: remarkable resistance to shear failure [J]. Scientific Reports, 2017, 7: 42742. DOI: 10.1038/srep42742.
|
[14] |
ZHANG T W, JIAO Z M, WANG Z H, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy [J]. Scripta Materialia, 2017, 136: 15–19. DOI: 10.1016/j.scriptamat.2017.03.039.
|
[15] |
郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系 [J]. 爆炸与冲击, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
|
[16] |
郭鹏程, 李键, 曹淑芬, 等. 大应变率范围内AM80镁合金的变形行为及组织演变 [J]. 爆炸与冲击, 2018, 38(3): 586–595. DOI: 10.11883/bzycj-2016-0266.
GUO P C, Li J, CAO S F, et al. Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range [J]. Explosion and Shock Waves, 2018, 38(3): 586–595. DOI: 10.11883/bzycj-2016-0266.
|
[17] |
TAKEUCHI A, INOUE A. Classification of Bulk Metallic Glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transactions, 2005, 46(12): 2817–2829. DOI: 10.2320/matertrans.46.2817.
|
[18] |
唐长国, 朱金华, 周惠久. 金属材料屈服强度的应变率效应和热激活理论 [J]. 金属学报, 1995, 31(6): 248–253.
TANG C G, ZHU J H, ZHOU H J. Correlation between yield stress and strain rate for metallic materials and thermal activation approach [J]. Acta Metallurgica Sinica, 1995, 31(6): 248–253.
|
[19] |
WANG L, QIAO J W, MA S G, et al. Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading [J]. Materials Science and Engineering A, 2018, 727: 208–213. DOI: 10.1016/j.msea.2018.05.001.
|
[20] |
DODD B, BAI Y. Adiabatic shear localization: frontiers and advances [M]. Amsterdam: Elsevier, 2012.
|
[21] |
ZENER C, HOLLOMN J H. Effect of Strain Rate upon Plastic Flow of Steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. DOI: 10.1063/1.1707363.
|
[22] |
王璐. CoCrFeNiAlx系高熵合金的动态力学特性 [D]. 太原, 太原理工大学, 2018.
|
[23] |
ZHU L, KOU H, LU J. On the role of hierarchical twins for achieving maximum yield strength in nanotwinned metals [J]. Applied Physics Letters, 2012, 101(8): 081906–081910. DOI: 10.1063/1.4747333.
|
[24] |
CAO T, SHANG J, ZHAO J, et al. The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys [J]. Materials Letters, 2016, 164: 344–347. DOI: 10.1016/j.matlet.2015.11.016.
|
[25] |
王璐, 马胜国, 赵聃, 等. AlCoCrFeNi高熵合金在冲击载荷下的动态力学性能 [J]. 热加工工艺, 2018, 47(24): 86–89. DOI: 10.14158/j.cnki.1001-3814.2018.24.021.
WANG L, MA S G, ZHAO D, et al. Dynamic mechanical properties of AlCoCrFeNi high-entropy alloys under impact load [J]. Hot Working Technology, 2018, 47(24): 86–89. DOI: 10.14158/j.cnki.1001-3814.2018.24.021.
|
[1] | LI Haifeng, MEN Jianbing, JIN Wen, LIU Xudong. J-C model of high-entropy alloy Ta-Hf-Nb-Zr system and its application test[J]. Explosion And Shock Waves, 2025, 45(3): 033103. doi: 10.11883/bzycj-2024-0069 |
[2] | TAN Yi, YANG Shuyi, SUN Yaobing, GUO Xiaojun. Determination of constitutive relation and fracture criterion parameters for ZL114A aluminum alloy[J]. Explosion And Shock Waves, 2024, 44(1): 013104. doi: 10.11883/bzycj-2022-0531 |
[3] | CHEN Jialin, LI Shutao, CHEN Yeqing. A study on dynamic mechanical properties of Al0.3CoCrFeNi high-entropy alloy considering crystal orientation[J]. Explosion And Shock Waves, 2024, 44(3): 031401. doi: 10.11883/bzycj-2023-0324 |
[4] | YE Xiangping, NAN Xiaolong, DUAN Zhiwei, YU Yuying, CAI Lingcang, LIU Cangli. Effects of roughness on dynamic compression propertiesof metallic materials by SHPB technique[J]. Explosion And Shock Waves, 2022, 42(1): 013104. doi: 10.11883/bzycj-2021-0008 |
[5] | WANG Qiang, WANG Jianjun, ZHANG Xiaoqiong, ZHANG Tianhui, WANG Huaikun, WU Guiying. Advances in the research of metallic thermo-viscoplastic constitutive relationships[J]. Explosion And Shock Waves, 2022, 42(9): 091402. doi: 10.11883/bzycj-2021-0443 |
[6] | WANG Lili, WANG Hui, DING Yuanyuan, CHEN Xiabo, YANG Liming, GONG Wenbo, HUAN Shi, MIAO Fuxing. Exploration of experimental study on constitutive relations of pulse waves[J]. Explosion And Shock Waves, 2022, 42(12): 121101. doi: 10.11883/bzycj-2022-0434 |
[7] | CHEN Haihua, ZHANG Xianfeng, LIU Chuang, LIN Kunfu, XIONG Wei, TAN Mengting. Research progress on impact deformation behavior of high-entropy alloys[J]. Explosion And Shock Waves, 2021, 41(4): 041402. doi: 10.11883/bzycj-2020-0414 |
[8] | SHI Yanli, JI Sunhang, WANG Wenda, ZHENG Long. The lateral impact performance of concrete-filled steel tubular (CFST) members at high temperatures[J]. Explosion And Shock Waves, 2020, 40(4): 043303. doi: 10.11883/bzycj-2019-0293 |
[9] | ZHANG Yunfeng, LUO Xingbai, LIU Guoqing, SHI Dongmei. Construction and application of the JH-2 model for a Zr-based bulk metallic glass alloy[J]. Explosion And Shock Waves, 2020, 40(7): 073101. doi: 10.11883/bzycj-2019-0377 |
[10] | GUO Zitao, GAO Bin, GUO Zhao, ZHANG Wei. Dynamic constitutive relation based on J-C model of Q235 steel[J]. Explosion And Shock Waves, 2018, 38(4): 804-810. doi: 10.11883/bzycj-2016-0333 |
[11] | JIAO Chujie, LI Xibo, CHENG Congmi, LI Congbo. Dynamic damage constitutive relationship of high strength concrete based on fractal theory[J]. Explosion And Shock Waves, 2018, 38(4): 925-930. doi: 10.11883/bzycj-2016-0377 |
[12] | Liu Mingtao, Li Yongchi, Hu Xiuzhang, Zhang Jie. The numerical stability of the constitutive calculation on viscoplastic materials[J]. Explosion And Shock Waves, 2017, 37(5): 969-975. doi: 10.11883/1001-1455(2017)05-0969-07 |
[13] | ZHOU Hong-qiang, ZHANG Feng-guo. Theplasticexpansionanddeformationofacylindershell[J]. Explosion And Shock Waves, 2012, 32(1): 91-96. doi: 10.11883/1001-1455(2012)01-0091-06 |
[14] | ZHANG Wei, XIAO Xin-ke, WEI Gang. Constitutiverelationandfracturemodelof7A04aluminumalloy[J]. Explosion And Shock Waves, 2011, 31(1): 81-87. doi: 10.11883/1001-1455(2011)01-0081-07 |
[15] | HUANG Xia, TANG Wen-hui, JIANG Bang-hai. Constitutiverelationforanisotropicmaterialsunderplane-strainconditions anditsapplicationtostress-wavepropagationsimulation[J]. Explosion And Shock Waves, 2010, 30(4): 383-389. doi: 10.11883/1001-1455(2010)04-0383-07 |
[16] | LI Zhi-kang, HUANG Feng-lei. A dynamic spherical cavity-expansion theory for concrete materials[J]. Explosion And Shock Waves, 2009, 29(1): 95-100. doi: 10.11883/1001-1455(2009)01-0095-06 |
[17] | WANG Yuan-bo, WANG Xiao-jun, YU Yu-miao, HU Xiu-zhang. Quasi-static and dynamic mechanical properties of Kevlar/epoxy composite laminates and its constitutive equation[J]. Explosion And Shock Waves, 2008, 28(3): 200-206. doi: 10.11883/1001-1455(2008)03-0200-07 |
[18] | CHEN Cheng-jun, XIE Ruo-ze, ZHANG Fang-ju, ZHAO Ya-bin, LU Zi-xing. An application of Taylor impact experiment to study mechanical behaviors of an aluminum-alloy foam[J]. Explosion And Shock Waves, 2008, 28(2): 166-171. doi: 10.11883/1001-1455(2008)02-0166-06 |
[19] | SHANG Bing, SHENG Jing, WANG Bao-zhen, HU Shi-sheng. Dynamic mechanical behavior and constitutive model of stainless steel[J]. Explosion And Shock Waves, 2008, 28(6): 527-531. doi: 10.11883/1001-1455(2008)06-0527-05 |
[20] | SUN Zi-jian, WANG Li-li. The constitutive behavior of PP/PA polymer blends taking account of damage evolution at high strain rate and large deformation[J]. Explosion And Shock Waves, 2006, 26(6): 492-497. doi: 10.11883/1001-1455(2006)06-0492-06 |
1. | 高茂国,刘睿,郭岩松,耿恒恒,陈鹏万. HfZrTiTaAl系高熵合金动态变形、损伤及破坏行为. 兵工学报. 2025(01): 290-300 . ![]() | |
2. | 李海峰,门建兵,金文,刘旭东. Ta-Hf-Nb-Zr体系高熵合金J-C模型及应用试验. 爆炸与冲击. 2025(03): 55-65 . ![]() | |
3. | 王开心,仝永刚,陈永雄,王洁,张舒研,梁秀兵. 高熵合金动态力学行为研究进展. 材料工程. 2024(01): 57-69 . ![]() | |
4. | 徐敬一,陈炯,吕竹文,陈小虎,王芳. 电子束预控工艺对HfZrTiTa0.6组织与性能的影响. 兵器材料科学与工程. 2024(06): 107-112 . ![]() | |
5. | 熊启林,曾昭泉,安稳,黄西成. 超高应变率下金属热力学塑性变形研究进展. 华中科技大学学报(自然科学版). 2023(01): 67-81 . ![]() | |
6. | 彭宝营,许冬,王鹏家,寇明虎. 不同工艺参数对AlCoCrFeNi高熵合金铣削性能的仿真影响分析. 工具技术. 2023(11): 103-106 . ![]() |