Citation: | MA Shengguo, WANG Zhihua. Dynamic mechanical properties and constitutive relations of CoCrFeNiAlx high entropy alloys[J]. Explosion And Shock Waves, 2021, 41(11): 111101. doi: 10.11883/bzycj-2020-0293 |
[1] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299–303. DOI: 10.1002/adem.200300567.
|
[2] |
CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering A, 2004, 375−377: 213–218. DOI: 10.1016/j.msea.2003.10.257.
|
[3] |
ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys [J]. Progress in Materials Science, 2014, 61(8): 1–93. DOI: 10.1016/j.pmatsci.2013.10.001.
|
[4] |
LI Z Z, ZHAO S T, RITCHIE R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Progress in Materials Science, 2019, 102: 296–345. DOI: 10.1016/j.pmatsci.2018.12.003.
|
[5] |
张勇, 陈明彪, 杨潇. 先进高熵合金技术 [M]. 北京: 化学工业出版社, 2019.
|
[6] |
SHAHMIR H, HE J Y, LU Z P, KAWASAKI M, et al. Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion [J]. Materials Science and Engineering A, 2017, 685: 342–348. DOI: 10.1016/j.msea.2017.01.016.
|
[7] |
SONI V, SENKOV O N, GWALANI B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy [J]. Scientific Reports, 2018, 8: 8816. DOI: 10.1038/s41598-018-27144-3.
|
[8] |
LIU J P, GUO X X, LIN Q Y, et al. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures [J]. Science China Materials, 2019, 62: 853–863. DOI: 10.1007/s40843-018-9373-y.
|
[9] |
ZHAO D, FANG H Q, JIN T, et al. Constitutive modeling and strain hardening of CoCrFeNiAl x high-entropy alloys [J]. Materials Research Express, 2019, 6: 1065h3. DOI: 10.1088/2053-1591/ab42e8.
|
[10] |
CHEN C L, SUPRIANTO. Microstructure and mechanical properties of AlCuNiFeCr high entropy alloy coatings by mechanical alloying [J]. Surface and Coating Technology, 2020, 386: 125443. DOI: 10.1016/j.surfcoat.2020.125443.
|
[11] |
VARVENNE C, CURTIN W A. Strengthening of high entropy alloys by dilute solute additions: CoCrFeNiAl x and CoCrFeNiMnAl x alloys [J]. Scripta Materialia, 2017, 138: 92–95. DOI: 10.1016/j.scriptamat.2017.05.035.
|
[12] |
LI D Y, ZHANG Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures [J]. Intermetallics, 2016, 70: 24–28. DOI: 10.1016/j.intermet.2015.11.002.
|
[13] |
LI Z, ZHAO S, DIAO H, et al. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: remarkable resistance to shear failure [J]. Scientific Reports, 2017, 7: 42742. DOI: 10.1038/srep42742.
|
[14] |
ZHANG T W, JIAO Z M, WANG Z H, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy [J]. Scripta Materialia, 2017, 136: 15–19. DOI: 10.1016/j.scriptamat.2017.03.039.
|
[15] |
郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系 [J]. 爆炸与冲击, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
|
[16] |
郭鹏程, 李键, 曹淑芬, 等. 大应变率范围内AM80镁合金的变形行为及组织演变 [J]. 爆炸与冲击, 2018, 38(3): 586–595. DOI: 10.11883/bzycj-2016-0266.
GUO P C, Li J, CAO S F, et al. Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range [J]. Explosion and Shock Waves, 2018, 38(3): 586–595. DOI: 10.11883/bzycj-2016-0266.
|
[17] |
TAKEUCHI A, INOUE A. Classification of Bulk Metallic Glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transactions, 2005, 46(12): 2817–2829. DOI: 10.2320/matertrans.46.2817.
|
[18] |
唐长国, 朱金华, 周惠久. 金属材料屈服强度的应变率效应和热激活理论 [J]. 金属学报, 1995, 31(6): 248–253.
TANG C G, ZHU J H, ZHOU H J. Correlation between yield stress and strain rate for metallic materials and thermal activation approach [J]. Acta Metallurgica Sinica, 1995, 31(6): 248–253.
|
[19] |
WANG L, QIAO J W, MA S G, et al. Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading [J]. Materials Science and Engineering A, 2018, 727: 208–213. DOI: 10.1016/j.msea.2018.05.001.
|
[20] |
DODD B, BAI Y. Adiabatic shear localization: frontiers and advances [M]. Amsterdam: Elsevier, 2012.
|
[21] |
ZENER C, HOLLOMN J H. Effect of Strain Rate upon Plastic Flow of Steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. DOI: 10.1063/1.1707363.
|
[22] |
王璐. CoCrFeNiAlx系高熵合金的动态力学特性 [D]. 太原, 太原理工大学, 2018.
|
[23] |
ZHU L, KOU H, LU J. On the role of hierarchical twins for achieving maximum yield strength in nanotwinned metals [J]. Applied Physics Letters, 2012, 101(8): 081906–081910. DOI: 10.1063/1.4747333.
|
[24] |
CAO T, SHANG J, ZHAO J, et al. The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys [J]. Materials Letters, 2016, 164: 344–347. DOI: 10.1016/j.matlet.2015.11.016.
|
[25] |
王璐, 马胜国, 赵聃, 等. AlCoCrFeNi高熵合金在冲击载荷下的动态力学性能 [J]. 热加工工艺, 2018, 47(24): 86–89. DOI: 10.14158/j.cnki.1001-3814.2018.24.021.
WANG L, MA S G, ZHAO D, et al. Dynamic mechanical properties of AlCoCrFeNi high-entropy alloys under impact load [J]. Hot Working Technology, 2018, 47(24): 86–89. DOI: 10.14158/j.cnki.1001-3814.2018.24.021.
|