Volume 41 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
BAO Lei, WANG Peng,, DANG Qian, LI Houda, KUANG Chen, YU Anfeng. Experimental study on detonation propagation in industrial scale pipelines used in petrochemical plants[J]. Explosion And Shock Waves, 2021, 41(9): 095401. doi: 10.11883/bzycj-2020-0295
Citation: BAO Lei, WANG Peng,, DANG Qian, LI Houda, KUANG Chen, YU Anfeng. Experimental study on detonation propagation in industrial scale pipelines used in petrochemical plants[J]. Explosion And Shock Waves, 2021, 41(9): 095401. doi: 10.11883/bzycj-2020-0295

Experimental study on detonation propagation in industrial scale pipelines used in petrochemical plants

doi: 10.11883/bzycj-2020-0295
  • Received Date: 2020-08-28
  • Rev Recd Date: 2020-12-24
  • Available Online: 2021-08-23
  • Publish Date: 2021-09-14
  • Based on the lack of systematic research on flame propagation in large-diameter and long-distance pipelines in the tank area of petrochemical plants, an experimental device for flame propagation in DN50-DN500 industrial-scale pipelines was designed and built. In this paper, effects of concentration of gas mixture for propagation characteristics of steady gaseous detonation waves in ethylene-air mixtures with DN50 pipeline were studied experimentally. The volume concentration of gas mixture was 5.6%, 5.93%, 6.6%, 7.15%, 8.0% ethylene in air. Homogeneous C2H4/air (6.6%) and C3H8/air (4.2%) mixtures were used with 9 kinds of pipelines which were from DN50 to DN500 to study the effects of pipeline diameter for propagation characteristics of steady gaseous detonation. The experimental results show that the concentration of combustible gas has an effect on flame propagation and detonation. The detonation runup distance is short and steady detonation is more likely to be formed when it is close to chemical equivalent concentration, when the combustible mixture is poorer or richer, the steady detonation will need more runup distance. The detonation flame speed and pressure are more affected by the type of combustible gas instead of pipe diameter. The detonation pressure of the mixture of 6.6% C2H4/air and the mixture of 4.2% C3H8/air is 15.17 and 14.47 times of the initial pressure, respectively, which is different from the reference value given by the ISO16852 standard where the ratio pm/p0 (the average value of the detonation pressure to initial pressure) increases with pipe diameter. The detonation pressure of pipeline below DN150 is far higher than the reference value which is 10 and 12. It’s suggested that in the design of pipelines and selection and installation of flame arresters for connecting pipelines in the tank areas, detonation pressure requires careful consideration and appropriate arresters should be selected in combination with the installation position.
  • loading
  • [1]
    王鹏, 白永忠, 党文义, 等. 储罐VOCs安全收集零排放装置: CN110143376B [P]. 2018-02-13.
    [2]
    PROUST C. Gas flame acceleration in long ducts [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 387–393. DOI: 10.1016/j.jlp.2015.04.001.
    [3]
    WANG L Q, MA H H, SHEN Z W, et al. Effects of bluff bodies on the propagation behaviors of gaseous detonation [J]. Combustion & Flame, 2019, 201: 118–128.
    [4]
    CICCARELLI G, DOROFEEV S. Flame acceleration and transition to detonation in ducts [J]. Progress in Energy and Combustion Science, 2008, 34(4): 499–550. DOI: 10.1016/j.pecs.2007.11.002.
    [5]
    周凯元, 李宗芬. 丙烷-空气爆燃波的火焰面在直管道中的加速运动 [J]. 爆炸与冲击, 2000, 20(2): 137–142.

    ZHOU K Y, LI Z F. Flame front acceleration of propane-air deflagration in straight tubes [J]. Explosion and shock waves., 2000, 20(2): 137–142.
    [6]
    CICCARELLI G, WANG Z, LU J, et al. Effect of orifice plate spacing on detonation propagation [J]. Journal of Loss Prevention in the Process Industries, 2017, 49(9): 739–744. DOI: 10.1016/j.jlp.2017.03.014.
    [7]
    周宁, 王文秀, 张国文, 等. 障碍物对丙烷-空气爆炸火焰加速的影响 [J]. 爆炸与冲击, 2018, 38(5): 1106–1114. DOI: 10.11883/bzycj-2017-0049.

    ZHOU N, WANG W X, ZHANG G W, et al. Effect of obstacles on flame acceleration of propane-air explosion [J]. Explosion and Shock Waves., 2018, 38(5): 1106–1114. DOI: 10.11883/bzycj-2017-0049.
    [8]
    ZHANG B. The influence of wall roughness on detonation limits in hydrogen–oxygen mixture [J]. Combustion and Flame, 2016, 169(7): 333–339. DOI: 10.1016/j.combustflame.2016.05.003.
    [9]
    司荣军. 管道内瓦斯爆炸传播试验研究 [J]. 煤炭科学技术, 2009, 37(2): 47–50.

    SI R J. Test and research on gas explosion transmission in pipeline [J]. Coal Science and Technology, 2009, 37(2): 47–50.
    [10]
    ZURAIJI A A, ZANGANEH J, MOGHTADERI B. Application of flame arrester in mitigation of explosion and flame deflagration of ventilation air methane [J]. Fuel, 2019, 257(1): 115985. DOI: 10.1016/j.fuel.2019.115985.
    [11]
    LIU Q M, BAI C H, LI X D, et al. Coal dust/air explosions in a large-scale tube [J]. Fuel, 2010, 89(2): 329–335. DOI: 10.1016/j.fuel.2009.07.010.
    [12]
    蒋新生, 谢威, 赵亚东, 等. 不同长径比的狭长管道油气爆炸实验 [J]. 油气储运, 2020, 39(8): 879–884.

    JIANG X S, XIE W, ZHAO Y D, et al. Experimental study on gasoline air mixture explosion using long-narrow pipes with different aspect ratios of oil storage and transportation engineering [J]. Oil & Gas Storage and Transportation., 2020, 39(8): 879–884.
    [13]
    孙少辰, 毕明树, 刘刚, 等. 爆轰火焰在管道阻火器内的传播与淬熄特征 [J]. 化工学报, 2016, 67(5): 2176–2184.

    SUN S C, BI M S, LIU G, et al. Detonation flame propagation and quenching characteristics in crimped-ribbon flame arrester [J]. Journal of Chemical Industry and Engineering, 2016, 67(5): 2176–2184.
    [14]
    ISO/TC 21Equipment for fire protection and fire fighting: ISO16852:2016 [S/OL]. 2016.
    [15]
    夏昌敬, 周凯元, 沈兆武. 初始条件影响气体非稳态爆轰波在弯管中传播特性的实验研究 [J]. 中国科学技术大学学报, 2004(1): 95–100.

    XIA C J, ZHOU K Y, SHEN Z W. Experimental study on effects of initial conditions for propagation characteristics of unsteady gaseous detonation in channels with a bend [J]. Journal of University of Science and Technology of China., 2004(1): 95–100.
    [16]
    BSI Standards. Guide for the selection, application and use of flame arresters: CEN16793 [S]. 2016.
    [17]
    KERSTEN C, FORSTER H. Investigation of deflagrations and detonations in pipes and flame arresters by high-speed framing [J]. Journal of Loss Prevention in the Process Industries, 2004, 17: 43–50. DOI: 10.1016/j.jlp.2003.09.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (413) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return