Citation: | MENG Xiangbao, WANG Junfeng, ZHANG Yansong, LI Zhiyong. Study on the inhibitory property and mechanism of inert powder on dust explosion flame of oil shale[J]. Explosion And Shock Waves, 2021, 41(10): 105401. doi: 10.11883/bzycj-2020-0306 |
[1] |
HAN X X, KULAOTS I, JIANG X M, et al. Review of oil shale semicoke and its combustion utilization [J]. Fuel, 2014, 126: 143–161. DOI: 10.1016/j.fuel.2014.02.045.
|
[2] |
LIU Z J, MENG Q T, DONG Q S, et al. Characteristics and resource potential of oil shale in China [J]. Oil Shale, 2017, 34(1): 15–41. DOI: 10.3176/oil.2017.1.02.
|
[3] |
柳蓉, 刘招君. 国内外油页岩资源现状及综合开发潜力分析 [J]. 吉林大学学报(地球科学版), 2006, 36(6): 892–898. DOI: 10.13278/j.cnki.jjuese.2006.06.004.
LIU R, LIU Z J. Oil shale resource situation and multi-purpose development potential in China and abroad [J]. Journal of Jilin University (Earth Science Edition), 2006, 36(6): 892–898. DOI: 10.13278/j.cnki.jjuese.2006.06.004.
|
[4] |
YU L F, LI G, LIU W C, et al. Experimental investigations on ignition sensitivity of hybrid mixtures of oil shale dust and syngas [J]. Fuel, 2017, 210: 1–7. DOI: 10.1016/j.fuel.2017.06.082.
|
[5] |
刘天奇, 李雨成, 罗红波. 不同变质程度煤尘爆炸压力特性变化规律实验研究 [J]. 爆炸与冲击, 2019, 39(9): 095403. DOI: 10.11883/bzycj-2018-0265.
LIU T Q, LI Y C, LUO H B. Experimental study on explosion pressure variation law of coal dust with different degrees of metamorphism [J]. Explosion and Shock Waves, 2019, 39(9): 095403. DOI: 10.11883/bzycj-2018-0265.
|
[6] |
LIU H, CHEN H Y, ZHANG X X, et al. Effects of different factors on the minimum ignition temperature of the mixed dust cloud of coal and oil shale [J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103977. DOI: 10.1016/j.jlp.2019.103977.
|
[7] |
SWEIS F K. The effect of admixed material on the minimum explosible concentration of oil shale [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6): 701–704. DOI: 10.1016/j.jlp.2006.04.003.
|
[8] |
黄子超. 抛光铝粉爆炸及ABC粉体抑爆特性的实验研究 [J]. 中国安全生产科学技术, 2020, 16(7): 119–124. DOI: 10.11731/j.issn.1673-193x.2020.07.019.
HUANG Z C. Experimental study on explosion of polished Aluminum powder and explosion suppression characteristics of ABC powder [J]. Journal of Safety Science and Technology, 2020, 16(7): 119–124. DOI: 10.11731/j.issn.1673-193x.2020.07.019.
|
[9] |
覃小玲, 李晓泉. NH4H2PO4对蔗糖粉尘爆炸的抑制作用试验研究 [J]. 中国安全科学学报, 2020, 30(4): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2020.04.007.
QIN X L, LI X Q. Experimental research on suppression of NH4H2PO4 on sucrose dust explosion [J]. China Safety Science Journal, 2020, 30(4): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2020.04.007.
|
[10] |
薛少谦. 抑制瓦斯煤尘爆炸传播的主动喷粉抑爆技术 [J]. 煤矿安全, 2013, 44(7): 66–69. DOI: 10.13347/j.cnki.mkaq.2013.07.051.
XUE S Q. Active dusting explosion suppression technology for inhibiting the spread of the gas and dust explosion [J]. Safety in Coal Mines, 2013, 44(7): 66–69. DOI: 10.13347/j.cnki.mkaq.2013.07.051.
|
[11] |
WANG X, ZHANG Y S, LIU B, et al. Effectiveness and mechanism of carbamide/fly ash cenosphere with bilayer spherical shell structure as explosion suppressant of coal dust [J]. Journal of Hazardous Materials, 2019, 365: 555–564. DOI: 10.1016/j.jhazmat.2018.11.044.
|
[12] |
HAMDAN M A, QUBBAJ A. Inhibition effect of inert compounds on oil shale dust explosion [J]. Applied Thermal Engineering, 1998, 18(5): 221–229. DOI: 10.1016/S1359-4311(97)00085-9.
|
[13] |
HAMDAN M A, SAKHRIEH A. Dust explosion of oil shale and olive cake solid fuels: a comparison study [J]. International Journal of Energy Research, 2005, 29(10): 871–878. DOI: 10.1002/er.1055.
|
[14] |
WANG J F, MENG X B, MA X S, et al. Experimental study on whether and how particle size affects the flame propagation and explosibility of oil shale dust [J]. Process Safety Progress, 2019, 38(3): e12075. DOI: 10.1002/prs.12075.
|
[15] |
WANG J F, ZHANG Y S, SU H F, et al. Explosion characteristics and flame propagation behavior of mixed dust cloud of coal dust and oil shale dust [J]. Energies, 2019, 12(20): 3807. DOI: 10.3390/en12203807.
|
[16] |
LIU B, ZHANG Y Y, MENG X B, et al. Study on explosion characteristics of the inert substances at Longkou oil shale of China [J]. Process Safety and Environmental Protection, 2020, 136: 324–333. DOI: 10.1016/j.psep.2019.12.033.
|
[17] |
王燕, 程义伸, 曹建亮, 等. 核-壳型KHCO3/赤泥复合粉体的甲烷抑爆特性 [J]. 煤炭学报, 2017, 42(3): 653–658. DOI: 10.13225/j.cnki.jccs.2016.0434.
WANG Y, CHENG Y S, CAO J L, et al. Suppression characteristics of KHCO3/red-mud composite powders with core-shell structure on methane explosion [J]. Journal of China Coal Society, 2017, 42(3): 653–658. DOI: 10.13225/j.cnki.jccs.2016.0434.
|
[18] |
JIANG H P, BI M S, LI B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion [J]. Journal of Hazardous Materials, 2019, 361: 273–282. DOI: 10.1016/j.jhazmat.2018.07.045.
|
[19] |
曹卫国. 褐煤粉尘爆炸特性实验及机理研究[D]. 南京: 南京理工大学, 2016: 73−74
CAO W G. Experimental and mechanism study on explosion characteristic of lignite coal dust [D]. Nanjing: Nanjing University of Science and Technology, 2016: 73−74.
|
[20] |
陈曦, 陈先锋, 张洪铭, 等. 惰化剂粒径对铝粉火焰传播特性影响的实验研究 [J]. 爆炸与冲击, 2017, 37(4): 759–765. DOI: 10.11883/1001-1455(2017)04-0759-07.
CHEN X, CHEN X F, ZHANG H M, et al. Effects of inerting agent with different particle sizes on the flame propagation of aluminum dust [J]. Explosion and Shock Waves, 2017, 37(4): 759–765. DOI: 10.11883/1001-1455(2017)04-0759-07.
|
[21] |
朱小超, 郑立刚, 于水军, 等. 阻塞比对竖直管道中铝粉爆炸特性的影响研究 [J]. 爆炸与冲击, 2019, 39(10): 105402. DOI: 10.11883/bzycj-2019-0006.
ZHU X C, ZHENG L G, YU S J, et al. Effect of blocking ratio on aluminum powder explosion’s characteristics in vertical duct [J]. Explosion and Shock Waves, 2019, 39(10): 105402. DOI: 10.11883/bzycj-2019-0006.
|
[22] |
JIANG H P, BI M S, PENG Q K, et al. Suppression of pulverized biomass dust explosion by NaHCO3 and NH4H2PO4 [J]. Renewable Energy, 2020, 147: 2046–2055. DOI: 10.1016/j.renene.2019.10.026.
|
[1] | MIAO Chunhe, XU Songlin, MA Hao, YUAN Liangzhu, LU Jianhua, WANG Pengfei. An experimental technique for medium strain-rate loading by a progressive cam[J]. Explosion And Shock Waves, 2023, 43(3): 034101. doi: 10.11883/bzycj-2022-0344 |
[2] | NIU Huanhuan, YAN Xiaopeng, LUO Haoshun, CHEN Jiajun, LI Zhiqiang. Mechanical response of sapphire transparent ceramic glass at different strain rates[J]. Explosion And Shock Waves, 2022, 42(7): 073105. doi: 10.11883/bzycj-2021-0434 |
[3] | WANG Mingtao, LU Yubin, CAI Xiongfeng, JIANG Xiquan, CHEN Linbi. A study of impact mechanical properties of the bamboo scrimber along the grain[J]. Explosion And Shock Waves, 2022, 42(4): 043102. doi: 10.11883/bzycj-2021-0260 |
[4] | LIU Sijia, CHEN Li, CAO Mingjin, ZHOU Donglei, FAN Yuan, CHEN Xin. Study on mechanical properties of the kinked rebar under high speed dynamic tension[J]. Explosion And Shock Waves, 2022, 42(5): 053101. doi: 10.11883/bzycj-2021-0328 |
[5] | YUAN Kangbo, YAO Xiaohu, WANG Ruifeng, MO Yonghui. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials[J]. Explosion And Shock Waves, 2022, 42(9): 091401. doi: 10.11883/bzycj-2021-0416 |
[6] | LIU Feng, LI Qingming. Stain-rate effects on the dynamic compressive strength of concrete-like materials under multiple stress state[J]. Explosion And Shock Waves, 2022, 42(9): 091408. doi: 10.11883/bzycj-2022-0037 |
[7] | YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion And Shock Waves, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114 |
[8] | CHEN Song, XI Huifeng, HUANG Shiqing, WANG Bowei, WANG Xiaogang. Mechanical properties of the mixed cellular material with soft matrix and its response to repeated impacts[J]. Explosion And Shock Waves, 2022, 42(6): 063104. doi: 10.11883/bzycj-2021-0283 |
[9] | GAO Yulong, SUN Xiaohong. On the parameters of dynamic deformation and damage models of aluminum alloy 6008-T4 used for high-speed railway vehicles[J]. Explosion And Shock Waves, 2021, 41(3): 033101. doi: 10.11883/bzycj-2020-0119 |
[10] | ZHU Yuan, ZHANG Jianxun, QIN Qinghua. Dynamic compressive response of metal orthogonal corrugated sandwich structure[J]. Explosion And Shock Waves, 2020, 40(1): 013101. doi: 10.11883/bzycj-2019-0038 |
[11] | WANG Zhuangzhuang, XU Peng, FAN Zhiqiang, MIAO Yuzhong, GAO Yubo, NIE Taoyi. Study on static and dynamic mechanical properties and fracture mechanism of cenospheres[J]. Explosion And Shock Waves, 2020, 40(6): 063101. doi: 10.11883/bzycj-2019-0337 |
[12] | HU Liangliang, HUANG Ruiyuan, GAO Guangfa, JIANG Dong, LI Yongchi. A novel method for determining strain rate of concrete-like materials in SHPB experiment[J]. Explosion And Shock Waves, 2019, 39(6): 063102. doi: 10.11883/bzycj-2018-0142 |
[13] | WANG Zhen, ZHANG Chao, WANG Yinmao, WANG Xiang, SUO Tao. Mechanical behaviours of aeronautical inorganic glass at different strain rates[J]. Explosion And Shock Waves, 2018, 38(2): 295-301. doi: 10.11883/bzycj-2016-0186 |
[14] | Xi Xulong, Bai Chunyu, Liu Xiaochuan, Mu Rangke, Wang Jizhen. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion And Shock Waves, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08 |
[15] | Wu Jinrong, Ma Qinyong. Influence of polyester fiber on impact compressive characteristics of permeable asphalt concrete[J]. Explosion And Shock Waves, 2016, 36(2): 279-284. doi: 10.11883/1001-1455(2016)02-0279-06 |
[16] | TAO Jun-lin, QIN Li-bo, LI Kui, LIU Dan, JIA Bin, CHEN Xiao-wei, CHEN Gang. Experimentalinvestigationondynamiccompressionmechanical performanceofconcreteathightemperature[J]. Explosion And Shock Waves, 2011, 31(1): 101-106. doi: 10.11883/1001-1455(2011)01-0101-06 |
[17] | YAN Cheng, OU Zhuo-cheng, DUAN Zhuo-ping, HUANG Feng-lei. Strain-rateeffectsondynamicstrengthofbrittlematerials[J]. Explosion And Shock Waves, 2011, 31(4): 423-427. doi: 10.11883/1001-1455(2011)04-0423-05 |
[18] | SHANG Bing, SHENG Jing, WANG Bao-zhen, HU Shi-sheng. Dynamic mechanical behavior and constitutive model of stainless steel[J]. Explosion And Shock Waves, 2008, 28(6): 527-531. doi: 10.11883/1001-1455(2008)06-0527-05 |
[19] | DOU Jin-long, WANG Xu-guang, LIU Yun-chuan. Dynamic mechanical behaviors of poplar wood[J]. Explosion And Shock Waves, 2008, 28(4): 367-371. doi: 10.11883/1001-1455(2008)04-0367-05 |
[20] | MA Xiu-fang, ZHAO Feng, XIAO Ji-jun, JI Guang-fu, ZHU Wei, XIAO He-ming. Simulation study on structure and property of HMX-based multi-components PBX[J]. Explosion And Shock Waves, 2007, 27(2): 109-115. doi: 10.11883/1001-1455(2007)02-0109-07 |