Volume 41 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LI Yi, MIAO Chunhe, XU Songlin, ZHANG Jinyong, WANG Pengfei. Wave propagation in density-graded viscoelastic material[J]. Explosion And Shock Waves, 2021, 41(1): 013202. doi: 10.11883/bzycj-2020-0313
Citation: LI Yi, MIAO Chunhe, XU Songlin, ZHANG Jinyong, WANG Pengfei. Wave propagation in density-graded viscoelastic material[J]. Explosion And Shock Waves, 2021, 41(1): 013202. doi: 10.11883/bzycj-2020-0313

Wave propagation in density-graded viscoelastic material

doi: 10.11883/bzycj-2020-0313
  • Received Date: 2020-08-31
  • Rev Recd Date: 2020-10-20
  • Publish Date: 2021-01-05
  • Wave propagation in visco-elastic materials with gradient density is really complex. In order to understand the responses of the visco-elastic materials to impact load, a series of theoretical equations for wave propagation in density-graded visco-elastic materials were proposed by employing the Euler form of the governing equations and the Laplace transform method. According to these equations, the wave propagation in the two-layer periodically-superimposed media with perpendicular incidence was analyzed. The Ti-TiB2 material with gradient density characteristics and the carbon-fiber-reinforced resin composites with strong visco-elastic properties were selected as experimental subjects to carry out dynamic impact tests by applying a split Hopkinson pressure bar (SHPB) device. To better reflect the influences of the gradient characteristics on the dynamic responses of the materials, the experimental specimens were prepared by using different stacking directions and modes. The data obtained by the SHPB device were analyzed by the three-wave method. Moreover, according to the incident wave and transmission wave obtained by the SHPB device, the wave propagation equations proposed for the visco-elastic media with gradient density were applied to obtain the corresponding theoretical solutions. And the calculated theoretical solutions were compared with the experimental results. The comparisons display as follows. (1) Due to the internal interface and the superimposed interface, the graded Ti-TiB2 materials show certain viscosity properties. For single-layer Ti-TiB2 specimens, the theoretically calculated results are approximately consistent with the experimental ones analyzed by the three-wave method. But there lie some differences for two-layer Ti-TiB2 specimens. (2) The two-layer carbon fiber reinforced resin composites exhibit stronger visco-elastic characteristics, and the attenuation amplitude of stress wave is larger. There are obvious differences between the experimental results analyzed by the three-wave method and theoretically calculated ones. As a consequence, the influences of the viscosity produced by the meso-structures and the viscosity of the material itself on the dynamic behaviors of the macro medium cannot be ignored.
  • loading
  • [1]
    徐松林, 刘永贵, 席道瑛, 等. 弹性波在含双裂纹岩体中的传播分析 [J]. 地球物理学报, 2012, 55(3): 944–952. DOI: 10.6038/j.issn.0001-5733.2012.03.024.

    XU S L, LIU Y G, XI D Y, et al. Analysis of propagation of elastic wave in rocks with double-crack model [J]. Chinese Journal of Geophysics, 2012, 55(3): 944–952. DOI: 10.6038/j.issn.0001-5733.2012.03.024.
    [2]
    谭子翰, 徐松林, 刘永贵, 等. 含多种尺寸缺陷岩体中的弹性波散射 [J]. 应用数学和力学, 2013, 34(1): 38–48. DOI: 10.3879/j.issn.1000-0887.2013.01.005.

    TAN Z H, XU S L, LIU Y G, et al. Scattering of elastic waves by multi-size defects in rock mass [J]. Applied Mathematics and Mechanics, 2013, 34(1): 38–48. DOI: 10.3879/j.issn.1000-0887.2013.01.005.
    [3]
    胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.

    HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
    [4]
    ZHAO H, GARY G, KLEPACZKO J R. On the use of a viscoelastic split Hopkinson pressure bar [J]. International Journal of Impact Engineering, 1997, 19(4): 319–330. DOI: 10.1016/S0734-743X(96)00038-3.
    [5]
    BACON C. An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar [J]. Experimental Mechanics, 1998, 38(4): 242–249. DOI: 10.1007/BF02410385.
    [6]
    王宝珍, 胡时胜. 猪肝动态力学性能及本构模型研究 [J]. 力学学报, 2017, 49(6): 1399–1408. DOI: 10.6052/0459-1879-17-238.

    WANG B Z, HU S S. Research on dynamic mechanical response and constitutive model of porcine liver [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1399–1408. DOI: 10.6052/0459-1879-17-238.
    [7]
    朱珏, 胡时胜, 王礼立. SHPB试验中粘弹性材料的应力均匀性分析 [J]. 爆炸与冲击, 2006, 26(4): 315–322. DOI: 10.11883/1001-1455(2006)04-0315-08.

    ZHU J, HU S S, WANG L L. Analysis on stress uniformity of viscoelastic materials in split Hopkinson bar tests [J]. Explosion and Shock Waves, 2006, 26(4): 315–322. DOI: 10.11883/1001-1455(2006)04-0315-08.
    [8]
    王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005: 148−177.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 148−177.
    [9]
    TING T C T, MUKUNOKI I. A theory of viscoelastic analogy for wave propagation normal to the layering of a layered medium [J]. Journal of Applied Mechanics, 1979, 46(2): 329–336. DOI: 10.1115/1.3424550.
    [10]
    TEDESCO J W, LANDIS D W. Wave propagation through layered systems [J]. Computers & Structures, 1989, 32(3/4): 625–638. DOI: 10.1016/0045-7949(89)90351-9.
    [11]
    HAN C, SUN C T. Attenuation of stress wave propagation in periodically layered elastic media [J]. Journal of Sound and Vibration, 2001, 243(4): 747–761. DOI: 10.1006/jsvi.2000.3420.
    [12]
    MUKERJI T. Waves and scales in heterogeneous rocks [D]. Stanford: Stanford University, 1995.
    [13]
    周风华, 陈亮. SHPB实验中粘弹性试件内部应力波的传播 [J]. 固体力学学报, 2010, 31(2): 149–156. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.02.006.

    ZHOU F H, CHEN L. Stress wave propagations in viscoelastic specimen during SHPB tests [J]. Chinese Journal of Solid Mechanics, 2010, 31(2): 149–156. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.02.006.
    [14]
    郑宇轩, 陈亮, 周风华, 等. Laplace变换法研究SHPB实验中试件的黏弹性波传播问题 [J]. 力学学报, 2014, 46(6): 843–852. DOI: 10.6052/0459-1879-14-002.

    ZHENG Y X, CHEN L, ZHOU F H, et al. Using Laplace transform to solve the viscoelastic wave problems in the SHPB experiments [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 843–852. DOI: 10.6052/0459-1879-14-002.
    [15]
    张鸣, 王道荣, 单俊芳, 等. 石英纤维布叠层材料冲击性能研究 [J]. 实验力学, 2018, 33(2): 183–193. DOI: 10.7520/1001-4888-17-201.

    ZHANG M, WANG D R, SHAN J F, et al. Investigation on impact properties of quartz fiber cloth laminated material [J]. Journal of Experimental Mechanics, 2018, 33(2): 183–193. DOI: 10.7520/1001-4888-17-201.
    [16]
    柯文轩. TiB2-TiB-Ti梯度材料的制备与力学性能研究[D]. 武汉: 武汉理工大学, 2013.

    KE W X. Fabrication and mechanical properties of TiB2-TiB-Ti functionally gradient materials [D]. Wuhan: Wuhan University of Technology, 2013.
    [17]
    张鸣. 变密度粘弹性介质中弹性波传播的理论和实验研究[D]. 合肥: 中国科学技术大学, 2018.

    ZHANG M. Theoretical and experimental study on the propagation of stress wave in viscoelastic medium with variable density [D]. Hefei: University of Science and Technology of China, 2018.
    [18]
    周光泉, 刘孝敏. 粘弹性理论[M]. 合肥: 中国科学技术大学出版社, 1996.

    ZHOU G Q, LIU X M. Viscoelastic theory [M]. Hefei: University of Science and Technology of China Press, 1996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (758) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return