Citation: | ZHENG Jian, LU Fangyun, CHEN Rong. Shock wave characteristics in a conical water explosion shock tube under cylindrical charge condition[J]. Explosion And Shock Waves, 2021, 41(10): 103201. doi: 10.11883/bzycj-2020-0316 |
[1] |
RAMAJEYATHILAGAM K, VENDHAN C P. Deformation and rupture of thin rectangular plates subjected to underwater shock [J]. International Journal of Impact Engineering, 2004, 30(6): 699–719. DOI: 10.1016/j.ijimpeng.2003.01.001.
|
[2] |
HUNG C F, HSU P Y, HWANG-FUU J J. Elastic shock response of an air-backed plate to underwater explosion [J]. International Journal of Impact Engineering, 2005, 31(2): 151–168. DOI: 10.1016/j.ijimpeng.2003.10.039.
|
[3] |
汪斌, 张远平, 王彦平. 水中爆炸气泡脉动现象的实验研究 [J]. 爆炸与冲击, 2008, 28(6): 572–576. DOI: 10.11883/1001-1455(2008)06-0572-05.
WANG B, ZHANG Y P, WANG Y P. Experimental study on bubble oscillation formed during underwater explosions [J]. Explosion and Shock Waves, 2008, 28(6): 572–576. DOI: 10.11883/1001-1455(2008)06-0572-05.
|
[4] |
朱凌, 段沐德, 黄骏德. 固支方板对水下爆炸的塑性动力响应 [J]. 海军工程大学学报, 1987(3): 1009–3486.
|
[5] |
LEE J J, SMITH M J, HUANG J, et al. Deformation and rupture of thin steel plates due to cumulative loading from underwater shock and bubble collapse [J]. Shock and Vibration, 2011, 18(3): 459–470. DOI: 10.3233/SAV-2010-0526.
|
[6] |
郑监, 卢芳云, 李翔宇. 金属板在水下爆炸加载下的动态响应研究进展 [J]. 中国测试, 2018, 44(10): 20–30. DOI: 10.11857/j.issn.1674-5124.2018.10.004.
ZHENG J, LU F Y, LI X Y. Research progress on dynamic response of metal plate in underwater explosion loading [J]. China Measurement & Test, 2018, 44(10): 20–30. DOI: 10.11857/j.issn.1674-5124.2018.10.004.
|
[7] |
张效慈. 水下爆炸试验相似准则 [J]. 船舶力学, 2007, 11(1): 108–118. DOI: 10.3969/j.issn.1007-7294.2007.01.014.
ZHANG X C. Similarity criteria for experiment of underwater explosion [J]. Journal of Ship Mechanics, 2007, 11(1): 108–118. DOI: 10.3969/j.issn.1007-7294.2007.01.014.
|
[8] |
LEBLANC J, GARDNER N, SHUKLA A. Effect of polyurea coatings on the response of curved E-Glass/Vinyl ester composite panels to underwater explosive loading [J]. Composites Part B: Engineering, 2013, 44(1): 565–574. DOI: 10.1016/j.compositesb.2012.02.038.
|
[9] |
LEBLANC J, SHUKLA A. Dynamic response of curved composite panels to underwater explosive loading: experimental and computational comparisons [J]. Composite Structures, 2011, 93(11): 3072–3081. DOI: 10.1016/j.compstruct.2011.04.017.
|
[10] |
LEBLANC J, SHUKLA A. Response of E-glass/vinyl ester composite panels to underwater explosive loading: effects of laminate modifications [J]. International Journal of Impact Engineering, 2011, 38(10): 796–803. DOI: 10.1016/j.ijimpeng.2011.05.004.
|
[11] |
DESHPANDE V S, HEAVER A, FLECK N A. An underwater shock simulator [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021–1041. DOI: 10.1098/rspa.2005.1604.
|
[12] |
ESPINOSA H D, LEE S, MOLDOVAN N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading [J]. Experimental Mechanics, 2006, 46(6): 805–824. DOI: 10.1007/s11340-006-0296-7.
|
[13] |
FILLER W S. Propagation of shock waves in a hydrodynamic conical shock tube [J]. The Physics of Fluids, 1964, 7(5): 664–667. DOI: 10.1063/1.1711266.
|
[14] |
ZALESAK J F, POCHÉ JR L B. The shock test facility: an explosive-driven, water-filled conical shock tube [C]// Proceedings of a Conference Sponsored by the Department of Defense, the National Aeronautics and Space Administration, and the Department of Energy. Virginia Beach, 1989: 73−76.
|
[15] |
HESHMATI M, ZAMANI J, MOZAFARI A. The experimental and numerical impacts of geometrical parameters of conical shock tube on the function, maximum pressure and generative impulses to expose equivalent mass and behavioral equation [J]. Materials Science & Engineering Technology, 2016, 47(7): 623–634. DOI: 10.1002/mawe.201600510.
|
[16] |
BJØRNØ L, LEVIN P. Underwater explosion research using small amounts of chemical explosives [J]. Ultrasonics, 1976, 14(6): 263–267. DOI: 10.1016/0041-624X(76)90033-0.
|
[17] |
库尔 P. 水下爆炸[M]. 罗耀杰, 韩润泽, 官信, 等, 译. 北京: 国防工业出版社, 1960: 167−168; 219.
|
[18] |
KEIL A H. The response of ships to underwater explosions [R]. New York: Society of Naval Architects and Marine Engineers, 1961: 43.
|
1. | 赵崇林,赖富文,孔凡胜,唐宇琦,王文廉. 爆炸环境气体测试防护结构的数值模拟. 自动化与仪器仪表. 2024(01): 160-165+171 . ![]() | |
2. | 吕永琪,游晓红,王录才. 泡沫铝夹芯板弯曲行为的仿真模拟. 金属功能材料. 2024(03): 74-79 . ![]() | |
3. | 刘进,张芸,马衍轩,李梦瑶,王鹏,张建,王公斌,张鹏,高嵩. 钢筋混凝土的负泊松比设计与抗高速冲击性能. 硅酸盐通报. 2024(08): 2858-2870 . ![]() | |
4. | 胡钰彬,游晓红,王录才,米渊聪. 泡沫铝夹芯结构抗冲击性能数值模拟. 金属功能材料. 2024(04): 24-30 . ![]() | |
5. | 刘志东,赵小华,方宏远,王高辉,石明生. 高聚物牺牲包层对钢筋混凝土板的爆炸毁伤缓解效应. 爆炸与冲击. 2023(02): 89-105 . ![]() | |
6. | 赵浩楠,方宏远,赵小华,王高辉. 接触爆炸作用下高聚物复合板毁伤特性分析. 爆炸与冲击. 2023(05): 3-19 . ![]() | |
7. | 周颖,黄广炎,王涛,解亚宸,张旭东. 多孔聚氨酯基复合削爆屏障的防护性能. 爆炸与冲击. 2023(10): 138-151 . ![]() | |
8. | 周宏元,杜文钊,王小娟,张雪健,余尚江,张宏. 地冲击下新型脆断构件防护性能实验研究. 爆炸与冲击. 2022(07): 115-125 . ![]() | |
9. | 周辉,任辉启,吴祥云,易治,黄魁,穆朝民,王海露. 成层式防护结构中分散层研究综述. 爆炸与冲击. 2022(11): 3-28 . ![]() |