Citation: | JIANG Yacheng, ZHOU Lei, ZHU Zheming, LI Jianfei, NIU Caoyuan, YING Peng. Effects of freeze-thaw cycles on dynamic fracture initiation characteristics of surrounding rock with pure Ⅰ type fracture under impact loads[J]. Explosion And Shock Waves, 2021, 41(4): 043104. doi: 10.11883/bzycj-2020-0330 |
[1] |
高焱, 朱永全, 赵东平, 等. 隧道寒区划分建议及保温排水技术研究 [J]. 岩石力学与工程学报, 2018, 37(S2): 3489–3499. DOI: 10.13722/j.cnki.jrme.2016.1115.
GAO Y, ZHU Y Q, ZHAO D P, et al. Study on classified suggestion of tunnel in cold region and thermal insulation-considered drainage technology [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 3489–3499. DOI: 10.13722/j.cnki.jrme.2016.1115.
|
[2] |
夏才初, 白雪莹, 韩常领. 冻融作用下多年冻土隧道结构及围岩变形规律 [J]. 哈尔滨工程大学学报, 2020, 41(7): 1016–1021. DOI: 10.11990/jheu.201901077.
XIA C C, BAI X Y, HAN C L. Deformation rules of surrounding rock and structure of permafrost tunnels under freezeing-thawing cycles [J]. Journal of Harbin Engineering University, 2020, 41(7): 1016–1021. DOI: 10.11990/jheu.201901077.
|
[3] |
夏才初, 黄文丰, 韩常领. 冻融循环条件下寒区隧道衬砌的服役性能 [J]. 哈尔滨工程大学学报, 2020, 41(3): 347–356. DOI: 10.11990/jheu.201811029.
XIA C C, HUANG W F, HAN C L. The study of service performance of tunnel lining in cold zone when suffered from freeze-thaw cycles [J]. Journal of Harbin Engineering University, 2020, 41(3): 347–356. DOI: 10.11990/jheu.201811029.
|
[4] |
那通兴, 张国柱, 陈俊栋. 寒区隧道含相变围岩传热渗流耦合数值分析 [J]. 隧道建设, 2018, 38(2): 144–150. DOI: 10.3973/j.issn.2096-4498.2018.S2.020.
NA T X, ZHANG G Z, CHEN J D. Coupling numerical analysis of heat transfer and seepage flow of surrounding rocks with phase transition in cold region tunnels [J]. Tunnel Construction, 2018, 38(2): 144–150. DOI: 10.3973/j.issn.2096-4498.2018.S2.020.
|
[5] |
申艳军, 杨更社, 王铭, 等. 冻融-周期荷载下单裂隙类砂岩损伤及断裂演化试验分析 [J]. 岩石力学与工程学报, 2018, 37(3): 709–717. DOI: 10.13722/j.cnki.jrme.2017.1296.
SHEN Y J, YANG G S, WANG Ming, et al. Experiments on the damage characteristic and fracture process of single-joint quasi-sandstone under the cyclic freezing-thawing and cyclic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 709–717. DOI: 10.13722/j.cnki.jrme.2017.1296.
|
[6] |
申艳军, 杨更社, 荣腾龙, 等. 冻融循环作用下单裂隙类砂岩局部化损伤效应及端部断裂特性分析 [J]. 岩石力学与工程学报, 2017, 36(3): 562–570. DOI: 10.13722/j.cnki.jrme.2016.0122.
SHEN Y J, YANG G S, RONG T L, et al. Localized damage effects of quasi-sandstone with single fracture and fracture behaviors of joint end under cyclic freezeing and thawing [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 562–570. DOI: 10.13722/j.cnki.jrme.2016.0122.
|
[7] |
张慧梅, 杨更社. 冻融环境下红砂岩力学特性试验及损伤分析 [J]. 力学与实践, 2013, 35(3): 57–61. DOI: 10.6052/1000-0879-12-379.
ZHANG H M, YANG G S. Mechanical property experiment and damage analysis of red sandstone under freeze-thaw environment [J]. Mechanics in Engineering, 2013, 35(3): 57–61. DOI: 10.6052/1000-0879-12-379.
|
[8] |
闻磊, 李夕兵, 尹彦波, 等. 冻融循环作用下花岗斑岩和灰岩物理力学性质对比分析及应用研究 [J]. 冰川冻土, 2014, 36(3): 632–639. DOI: 10.7522/j.issn.1000-0240.2014.0076.
WEN L, LI X B, YIN Y B, et al. Study of physico-mechanical properties of granite porphyry and limestone in slopes of open-pit metal mine under freezing-thawing cycles and their application [J]. Journal of Glaciology and Geocryology, 2014, 36(3): 632–639. DOI: 10.7522/j.issn.1000-0240.2014.0076.
|
[9] |
闻磊, 李夕兵, 唐海燕, 等. 变温度区间冻融作用下岩石物理力学性质研究及工程应用 [J]. 工程力学, 2017, 34(5): 247–256. DOI: 10.6052/j.issn.1000-4750.2015.11.0921.
WEN L, LI X B, TANG H Y, et al. Study of physico-mechanical characteristics of rock under different frozen-thawed circle temperature range and its engineering application [J]. Engineering Mechanics, 2017, 34(5): 247–256. DOI: 10.6052/j.issn.1000-4750.2015.11.0921.
|
[10] |
陈宇龙, 张科, 孙欢. 冻融循环作用下岩石表面裂纹扩展过程细观研究 [J]. 土木工程学报, 2019, 52(S1): 1–7. DOI: 10.15951/j.tmgcxb.2019.s1.001.
CHEN Y L, ZHENG K, SUN H. Meso-research on the development of rock surface crack under freeze-thaw cycles [J]. China Civil Engineering Journal, 2019, 52(S1): 1–7. DOI: 10.15951/j.tmgcxb.2019.s1.001.
|
[11] |
刘泉声, 黄诗冰, 康永水, 等. 低温冻结岩体单裂隙冻胀力与数值计算研究 [J]. 岩土工程学报, 2015, 37(9): 1572–1580. DOI: 10.11779/CJGE201509003.
LIU Q S, HUANG S B, KANG Y S, et al. Numerical and theoretical studies on frost heaving pressure in a single fracture of frozen rock mass under low temperature [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1572–1580. DOI: 10.11779/CJGE201509003.
|
[12] |
刘少赫, 许金余, 王鹏, 等. 冻融红砂岩的SHPB试验研究及细观分析 [J]. 振动与冲击, 2017, 36(20): 203–209. DOI: 10.13465/j.cnki.jvs.2017.20.031.
LIU S H, XU J Y, WANG P, et al. An SHPB experimental study and microscomic analysis of freeze-thaw red sandstone [J]. Journal of Vibration and Shock, 2017, 36(20): 203–209. DOI: 10.13465/j.cnki.jvs.2017.20.031.
|
[13] |
GHOLAMREZA K, REZA Z S, YASIN A. The effect of freeze-thaw cycles on physical and mechanical properties of upper red formation sandstones, central part of Iran [J]. Arabian Journal of Geosciences, 2015, 8(8): 5991–6001. DOI: 10.1007/s12517-014-1653-y.
|
[14] |
GHOBADI M H, BABAZADEH R. Experimental studies on the effects of cyclic freezing–thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones [J]. Rock Mechanics and Rock Engineering, 2015, 48: 1001–1016. DOI: 10.1007/s00603-014-0609-6.
|
[15] |
周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下隧道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.
ZHOU L, ZHU Z M, DONG Y Q, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.
|
[16] |
周磊, 朱哲明, 董玉清, 等. 冲击加载下隧道内裂纹的扩展特性及破坏行为 [J]. 爆炸与冲击, 2018, 38(4): 785–794. DOI: 10.11883/bzycj-2016-0383.
ZHOU L, ZHU Z M, DONG Y Q, et al. The propagation characteristics and failure behavior of crack in tunnel under impact loads [J]. Explosion and Shock Waves, 2018, 38(4): 785–794. DOI: 10.11883/bzycj-2016-0383.
|
[17] |
付安琪, 蔚立元, 苏海健, 等. 循环冲击损伤后大理岩静态断裂力学特性研究 [J]. 岩石力学与工程学报, 2019, 38(10): 2022–2020. DOI: 10.13722/j.cnki.jrme.2019.0323.
FU A Q, WEI L Y, SU H J, et al. Experimental study on static fracturing mechanical characteristic of marble after cyclic impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2022–2020. DOI: 10.13722/j.cnki.jrme.2019.0323.
|
[18] |
WANG M, ZHU Z, DONG Y, et al. Study of mixed-mode I/II fractures using single cleavage semicircle compression specimens under impacting loads [J]. Engineering Fracture Mechanics., 2017, 177: 33–44. DOI: 10.1016/j.engfracmech.2017.03.042.
|
[19] |
王蒙, 朱哲明, 王雄. 冲击荷载作用下的Ⅰ/Ⅱ复合型裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.
WANG M, ZHU Z M, WANG X. The growth of mixed-mode Ⅰ/Ⅱ crack under impacting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.
|
[20] |
WANG Q Z, FENG F, NI M, et al. Measurement of mode Ⅰ and mode Ⅱ rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar [J]. Engineering Fracture Mechanics., 2011, 78(12): 2455–2469. DOI: 10.1016/j.engfracmech.2011.06.004.
|
[21] |
住房与城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013 [S]. 北京中国计划出版社, 2013: 17−18.
|
[22] |
范天佑. 断裂动力学原理与应用 [M]. 北京: 北京理工大学出版社, 2006: 19−22.
|
[23] |
GREGOIRE G, MAIGRE H, RETHORE J, et al. Dynamic crack propagation under mixed-mode loading-comparison between experiments and X-FEM simulations [J]. International Journal of Solids and Structures, 2007, 44: 6517–6534. DOI: 10.1016/j.ijsolstr.2007.02.044.
|
[24] |
陶明, 汪军, 李占文, 等. 冲击荷载下花岗岩层裂断口-微观试验研究 [J]. 岩石力学与工程学报, 2019, 38(11): 2172–2181. DOI: 10.13722/j.cnki.jrme.2019.0185.
TAO M, WANG J, LI Z W, et al. Meso and micro-experimental research on the fracture of granite spallation under impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2172–2181. DOI: 10.13722/j.cnki.jrme.2019.0185.
|
[25] |
邓华锋, 支永艳, 段玲玲, 等. 水-岩作用下砂岩力学特性及微细观结构损伤演化 [J]. 岩土力学, 2019, 40(9): 3447–3456. DOI: 10.16285/j.rsm.2018.1002.
DENG H F, ZHI Y Y, DUAN L L, et al. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction [J]. Rock and Soil Mechanics, 2019, 40(9): 3447–3456. DOI: 10.16285/j.rsm.2018.1002.
|