Citation: | BAO Kuo, ZHANG Xianfeng, WANG Guiji, DENG Jiajie, HAN Dan, TAN Mengting, WEI Haiyang. Fracture characteristics of YAG transparent ceramic composite targets subjected to impact of sphere fragments[J]. Explosion And Shock Waves, 2021, 41(3): 031402. doi: 10.11883/bzycj-2020-0339 |
[1] |
STRASSBURGER E, HUNZINGER M, PATEL P, et al. Analysis of the fragmentation of AlON and spinel under ballistic impact [J]. Journal of Applied Mechanics, 2013, 80(3): 031807. DOI: 10.1115/1.4023573.
|
[2] |
STRASSBURGER E, BAUER S. Analysis of the interaction of projectiles with ceramic targets by means of flash X-ray cinematography and optical methods [C] // Proceedings of the 41st International Conference on Advanced Ceramics and Composites: Ceramic Engineering and Science Proceedings. The American Ceramic Society, 2018, 38(2): 205−219. DOI: 10.1002/9781119474678.ch20.
|
[3] |
焦文俊, 陈小伟. 长杆高速侵彻问题研究进展 [J]. 力学进展, 2019, 49(1): 201904. DOI: 10.6052/1000-0992-17-021.
JIAO W J, CHEN X W. Review on long-rod penetration at hypervelocity [J]. Advances in Mechanics, 2019, 49(1): 201904. DOI: 10.6052/1000-0992-17-021.
|
[4] |
谈梦婷, 张先锋, 包阔, 等. 装甲陶瓷的界面击溃效应 [J]. 力学进展, 2019, 49(1): 201905. DOI: 10.6052/1000-0992-17-015.
TAN M T, ZHANG X F, BAO K, et al. Interface defeat of ceramic armor [J]. Advances in Mechanics, 2019, 49(1): 201905. DOI: 10.6052/1000-0992-17-015.
|
[5] |
LA SALVIA J C, LEAVY R B, HOUSKAMP J R, et al. Ballistic impact damage observations in a hot-pressed boron carbide [J]. Ceramic Engineering & Science Proceedings, 2010, 30(5): 45–55. DOI: 10.1002/9780470584330.ch5.
|
[6] |
LA SALVIA J C, NORMANDIA M J, MILLER H T, et al. Sphere Impact Induced Damage in Ceramics: I. Armor-Grade SiC and TiB2 [M] // Advances in Ceramic Armor: A Collection of Papers Presented at the 29th International Conference on Advanced Ceramics and Composites, January 23−28, 2005. Cocoa Beach: John Wiley & Sons, Ltd, 2008. DOI: 10.1002/9780470291276.ch20.
|
[7] |
MCCAULEY J W, STRASSBURGER E, PATEL P, et al. Experimental observations on dynamic response of selected transparent armor materials [J]. Experimental Mechanics, 2013, 53(1): 3–29. DOI: 10.1007/s11340-012-9658-5.
|
[8] |
LA SALVIA J C, NORMANDIA M J, MILLER H T, et al. Sphere impact induced damage in ceramics: II. Armor-Grade B4C and WC [M] // Advances in Ceramic Armor: A Collection of Papers Presented at the 29th International Conference on Advanced Ceramics and Composites, January 23−28, 2005. Cocoa Beach, Florida: John Wiley & Sons Inc., 2008. DOI: 10.1002/9780470291276.ch21.
|
[9] |
MURRAY N H, BOURNE N K, ROSENBERG Z, et al. The spall strength of alumina ceramics [J]. Journal of Applied Physics, 1998, 84(2): 734–738. DOI: 10.1063/1.368130.
|
[10] |
CHEN M W, MCCAULEY J W, DANDEKAR D P, et al. Dynamic plasticity and failure of high-purity alumina under shock loading [J]. Nature Materials, 2006, 5(8): 614–618. DOI: 10.1038/nmat1689.
|
[11] |
BOURNE N K, GREEN W H, DANDEKAR D P. On the one-dimensional recovery and microstructural evaluation of shocked alumina [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2074): 3197–3212. DOI: 10.1098/rspa.2006.1713.
|
[12] |
SUBHASH G, MAITI S, GEUBELLE, et al. Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics [J]. Journal of the American Ceramic Society, 2008, 91(9): 2777–2791. DOI: 10.1111/j.1551-2916.2008.02624.x.
|
[13] |
KWAN H Y, KOBAYASHI A S. Dynamic fracture responses of alumina and two ceramic composites [J]. Journal of the American Ceramic Society, 1990, 73(8): 2309–2315. DOI: 10.1111/j.1151-2916.1990.tb07593.x.
|
[14] |
HANEY E J, SUBHASH G. Edge-on-impact response of a coarse-grained magnesium aluminate spinel rod [J]. International Journal of Impact Engineering, 2012, 40−41: 26–34. DOI: 10.1016/j.ijimpeng.2011.10.001.
|
[15] |
JIANG W, CHENG X W, XIONG Z P, et al. Static and dynamic mechanical properties of Yttrium Aluminum Garnet (YAG) [J]. Ceramics International, 2019, 45(9): 12256–12263. DOI: 10.1016/j.ceramint.2019.03.136.
|
[16] |
NEMAT-NASSER S, HORII H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst [J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B8): 6805–6821. DOI: 10.1029/JB087iB08p06805.
|
[17] |
HORII H, NEMAT-NASSER S. Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure [J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B4): 3105–3125. DOI: 10.1029/JB090iB04p03105.
|
1. | 刘振皓,宋俊柏,罗鹰,曾鸿,李志强,王建民. 基于面密度补偿的高速弹丸多重撞击防护方法. 航天器环境工程. 2025(01): 16-21 . ![]() | |
2. | 宗香华,王银,孔祥振,姜雅婷,孙留洋,袁俊成,杨涛春. 错位多次打击下UHPC靶体损伤破坏效应的数值模拟研究. 高压物理学报. 2024(03): 161-173 . ![]() | |
3. | 赖建中,何勇,任辉启. UHPC防护工程材料研究进展. 防护工程. 2023(01): 1-7 . ![]() | |
4. | 吕映庆,陈南勋,武海军,赵宏远,张雪岩. 弹体高速侵彻超高性能混凝土靶机理. 兵工学报. 2022(01): 37-47 . ![]() | |
5. | 吴平,周飞,李庆华,徐世烺,陈柏锟. 超高韧性水泥基复合材料—纤维混凝土组合靶体抗两次打击试验研究. 爆炸与冲击. 2022(03): 53-65 . ![]() | |
6. | 徐世烺,吴平,周飞,李庆华,曾田,蒋霄. 活性粉末混凝土抗多次侵彻实验研究及数值预测. 爆炸与冲击. 2021(06): 68-83 . ![]() | |
7. | 钟锐,张峰领. 超高性能混凝土、纤维增强高强及高延性混凝土抗侵彻性能比较. 硅酸盐学报. 2021(11): 2423-2434 . ![]() | |
8. | 蒋志刚,万帆,谭清华,刘飞,宋殿义. 钢管约束混凝土抗多发打击试验. 国防科技大学学报. 2016(03): 117-123 . ![]() |