Volume 41 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
GAO Yukui, TAO Xuefei. A review on the influences of high speed impact surface treatments on mechanical properties and microstructures of metallic materials[J]. Explosion And Shock Waves, 2021, 41(4): 041401. doi: 10.11883/bzycj-2020-0342
Citation: GAO Yukui, TAO Xuefei. A review on the influences of high speed impact surface treatments on mechanical properties and microstructures of metallic materials[J]. Explosion And Shock Waves, 2021, 41(4): 041401. doi: 10.11883/bzycj-2020-0342

A review on the influences of high speed impact surface treatments on mechanical properties and microstructures of metallic materials

doi: 10.11883/bzycj-2020-0342
  • Received Date: 2020-09-22
  • Rev Recd Date: 2020-11-21
  • Available Online: 2021-03-18
  • Publish Date: 2021-04-14
  • The strain rate during the process of high speed impact surface treatments has a significant effect on the mechanical properties as well as the microstructures of metallic materials. In this paper, the effects of strain rate during the process of high speed impact surface treatments on the variation of both strength and ductility of metallic materials are reviewed from macroscopic and microscopic prospective based on the current research achievements. The emphases are concentrated on the microstructural evolution under various strain rates, including grain structures, adiabatic shear bands, phases, dislocation structures, precipitates and deformation twins. At relatively low strain rates, grains tend to be elongated with respect to the loading direction, and they may be refined when the strain increases to a certain extent. In comparison, with the increment of strain rates, the free path of dislocation motion is remarkably reduced so that grains can be further refined to consume the impact energy and dislocations are multiplied significantly. However, the relatively high strain rates may also bring about adiabatic temperature rise and frictional heat, which may give rise to dynamic recovery and recrystallization in some materials so that the dislocation density would in turn be reduced. Moreover, precipitates can be formed and they may interact with dislocations owing to the combined effects of high strain rates and temperature rise. When the strain rates increase to the extremely high level, the movement of dislocations may be inhibited and deformation twins can be triggered to coordinate the deformation. As a result, the strain rate effects are complicated phenomena which comprehensively affect the microstructural strengthening and softening effects. Based on these, the influences of both microstructural evolution and the transition of microscopic deformation mechanisms with strain rates on the enhancement and deterioration of mechanical properties are analyzed. Finally, the characteristics of deformation mechanisms of the gradient microstructures derived from high velocity impact surface treatments are concluded. Furthermore, a comprehensive model embodying the influences of different microstructures is proposed, which can provide a foundation for the further researches of strain rate effects.
  • loading
  • [1]
    BOBBILI R, RAMAKRISHNA B, MADHU V, et al. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures [J]. Defence Technology, 2015, 11(1): 93–98. DOI: 10.1016/j.dt.2014.08.004.
    [2]
    PRAKASH G, SINGH N K, GUPTA N K. Deformation behaviours of Al2014-T6 at different strain rates and temperatures [J]. Structures, 2020, 26: 193–203. DOI: 10.1016/j.istruc.2020.03.068.
    [3]
    GRACIO J J, BARLAT F, RAUCH E, et al. A review of the relationship between microstructural features and the stress-strain behavior of metals [J]. Materialwissenschaft und Werkstofftechnik, 2005, 36(10): 572–577. DOI: 10.1002/mawe.200500916.
    [4]
    MIKHAYLOVSKAYA A, YAKOVTSEVA O, SITKINA M, et al. Grain-boundary and intragranular deformation in ultrafine-grained aluminum-based alloy at high strain rate [J]. Materials Letters, 2020, 276: 128242. DOI: 10.1016/j.matlet.2020.128242.
    [5]
    惠旭龙, 白春玉, 刘小川, 等. 宽应变率范围下2A16-T4铝合金动态力学性能 [J]. 爆炸与冲击, 2017, 37(5): 871–878. DOI: 10.11883/1001-1455(2017)05-0871-08.

    HUI X L, BAI C Y, LIU X C, et al. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates [J]. Explosion and Shock Waves, 2017, 37(5): 871–878. DOI: 10.11883/1001-1455(2017)05-0871-08.
    [6]
    惠旭龙, 白春玉, 葛宇静, 等. 2A16铝合金中应变率力学性能研究 [J]. 振动与冲击, 2017, 36(19): 66–70. DOI: 10.13465/j.cnki.jvs.2017.19.010.

    HUI X L, BAI C Y, GE Y J, et al. Dynamic properties of 2A16 aluminum alloy under intermediate strain rate [J]. Journal of Vibration and Shock, 2017, 36(19): 66–70. DOI: 10.13465/j.cnki.jvs.2017.19.010.
    [7]
    EL-ATY A A, XU Y, ZHANG S H, et al. Impact of high strain rate deformation on the mechanical behavior, fracture mechanisms and anisotropic response of 2060 Al-Cu-Li alloy [J]. Journal of Advanced Research, 2019, 18: 19–37. DOI: 10.1016/j.jare.2019.01.012.
    [8]
    ANDRADE U R, MEYERS M A, CHOKSHI A H. Constitutive description of work- and shock-hardened copper [J]. Scripta Metallurgica et Materialia, 1994, 30(7): 933–938. DOI: 10.1016/0956-716X(94)90418-9.
    [9]
    JOHNSON G R, HOLMQUIST T J. Evaluation of cylinder-impact test data for constitutive model constants [J]. Journal of Applied Physics, 1988, 64(8): 3901–3910. DOI: 10.1063/1.341344.
    [10]
    RULE W K, JONES S E. A revised form for the Johnson−Cook strength model [J]. International Journal of Impact Engineering, 1998, 21(8): 609–624. DOI: 10.1016/S0734-743X(97)00081-X.
    [11]
    高宁, 朱志武. 铝合金应变率效应综述及其机理研究 [J]. 应用数学和力学, 2014, 35(S1): 208–212.

    GAO N, ZHU Z W. Study on the strain rate effects and mechanisms for aluminum alloys [J]. Applied Mathematics and Mechanics, 2014, 35(S1): 208–212.
    [12]
    ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. DOI: 10.1063/1.338024.
    [13]
    JIAO M Y, MA L F, JIA W T, et al. A new phenomenological model describing the compressive thermal deformation flow stress of cast-rolled AZ31B Mg alloy [J]. Materials Research Express, 2019, 6(9): 096597. DOI: 10.1088/2053-1591/ab30ae.
    [14]
    ZERILLI F J, ARMSTRONG R W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations [J]. Journal of Applied Physics, 1990, 68(4): 1580–1591. DOI: 10.1063/1.346636.
    [15]
    ZERILLI F J, ARMSTRONG R W. The effect of dislocation drag on the stress-strain behavior of FCC metals [J]. Acta Metallurgica et Materialia, 1992, 40(8): 1803–1808. DOI: 10.1016/0956-7151(92)90166-C.
    [16]
    马鸣图, 李洁, 赵岩, 等. 汽车用金属材料在高应变速率下响应特性的研究进展 [J]. 机械工程材料, 2017, 41(9): 1–13, 24. DOI: 10.11973/jxgccl201709001.

    MA M T, LI J, ZHAO Y, et al. Research progress of response characteristics of metallic materials for automotive under high strain rates [J]. Materials for Mechanical Engineering, 2017, 41(9): 1–13, 24. DOI: 10.11973/jxgccl201709001.
    [17]
    朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. DOI: 10.6052/1000-0992-2010-4-j2009-144.

    ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. DOI: 10.6052/1000-0992-2010-4-j2009-144.
    [18]
    卢泓昱, 刘志奇, 宋建丽, 等. 花键冷敲成形本构关系研究 [J]. 太原科技大学学报, 2015, 36(3): 184–189. DOI: 10.3969/j.issn.1673-2057.2015.03.005.

    LU H Y, LIU Z Q, SONG J L, et al. Study of constitutive relation in cold rolling spline [J]. Journal of Taiyuan University of Science and Technology, 2015, 36(3): 184–189. DOI: 10.3969/j.issn.1673-2057.2015.03.005.
    [19]
    KIM J B, SHIN H. Comparison of plasticity models for tantalum and a modification of the PTW model for wide ranges of strain, strain rate, and temperature [J]. International Journal of Impact Engineering, 2009, 36(5): 746–753. DOI: 10.1016/j.ijimpeng.2008.11.003.
    [20]
    刘旭红, 黄西成, 陈裕泽, 等. 强动载荷下金属材料塑性变形本构模型评述 [J]. 力学进展, 2007, 37(3): 361–374. DOI: 10.6052/1000-0992-2007-3-J2006-184.

    LIU X H, HUANG X C, CHEN Y Z, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading [J]. Advances in Mechanics, 2007, 37(3): 361–374. DOI: 10.6052/1000-0992-2007-3-J2006-184.
    [21]
    HATAMLEH O. The effects of laser peening and shot peening on mechanical properties in friction stir welded 7075-T7351 aluminum [J]. Journal of Materials Engineering and Performance, 2008, 17(5): 688–694. DOI: 10.1007/s11665-007-9163-7.
    [22]
    KHUN N W, TRUNG P Q, BUTLER D L. Mechanical and tribological properties of shot-peened SAE 1070 steel [J]. Tribology Transactions, 2016, 59(5): 932–943. DOI: 10.1080/10402004.2015.1121313.
    [23]
    CHEN A Y, JIA Y Q, PAN D, et al. Reinforcement of laser-welded stainless steels by surface mechanical attrition treatment [J]. Materials Science and Engineering: A, 2013, 571: 161–166. DOI: 10.1016/j.msea.2013.02.018.
    [24]
    韩梅, 喻健, 李嘉荣, 等. 喷丸对DD6单晶高温合金拉伸性能的影响 [J]. 材料工程, 2019, 47(8): 169–175. DOI: 10.11868/j.issn.1001-4381.2019.000191.

    HAN M, YU J, LI J R, et al. Influence of shot peening on tensile properties of DD6 single crystal superalloy [J]. Journal of Materials Engineering, 2019, 47(8): 169–175. DOI: 10.11868/j.issn.1001-4381.2019.000191.
    [25]
    朱敏, 吴桂林, 李玉胜, 等. 旋转加速喷丸处理18CrNiMo7-6钢的微观结构与力学性能 [J]. 材料导报, 2018, 32(10): 1645–1649, 1662. DOI: 10.11896/j.issn.1005-023X.2018.10.014.

    ZHU M, WU G L, LI Y S, et al. Microstructure and mechanical properties of 18CrNiMo7-6 steel processed by rotationally accelerated shot peening [J]. Materials Reports, 2018, 32(10): 1645–1649, 1662. DOI: 10.11896/j.issn.1005-023X.2018.10.014.
    [26]
    KUMAR S, RAO G S, CHATTOPADHYAY K, et al. Effect of surface nanostructure on tensile behavior of superalloy IN718 [J]. Materials & Design, 2014, 62: 76–82. DOI: 10.1016/j.matdes.2014.04.084.
    [27]
    YANG C, LIU Y G, SHI Y H, et al. Microstructure characterization and tensile properties of processed TC17 via high energy shot peening [J]. Materials Science and Engineering: A, 2020, 784: 139298. DOI: 10.1016/j.msea.2020.139298.
    [28]
    ZHOU W F, REN X D, YANG Y, et al. Tensile behavior of nickel with gradient microstructure produced by laser shock peening [J]. Materials Science and Engineering: A, 2020, 771: 138603. DOI: 10.1016/j.msea.2019.138603.
    [29]
    LU K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345(6203): 1455–1456. DOI: 10.1126/science.1255940.
    [30]
    WU X L, JIANG P, CHEN L, et al. Synergetic strengthening by gradient structure [J]. Materials Research Letters, 2014, 2(4): 185–191. DOI: 10.1080/21663831.2014.935821.
    [31]
    YANG X C, MA X L, MOERING J, et al. Influence of gradient structure volume fraction on the mechanical properties of pure copper [J]. Materials Science and Engineering: A, 2015, 645: 280–285. DOI: 10.1016/j.msea.2015.08.037.
    [32]
    高玉魁. 表面完整性理论与应用[M]. 北京: 化学工业出版社, 2014: 4−9.
    [33]
    FENG X, SUN Y P, ZHOU S P, et al. Influence of strain rate on microstructures and mechanical properties of 2524Al alloy fabricated by a novel large strain rolling [J]. Materials Research Express, 2020, 7(2): 026519. DOI: 10.1088/2053-1591/ab70e0.
    [34]
    ZHANG S W, ZHANG D W, WANG Y F, et al. The planetary rolling process of forming the internal thread [J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(7-8): 3543–3551. DOI: 10.1007/s00170-020-05289-8.
    [35]
    高玉魁, 柳鸿飞. 低塑性抛光技术对材料表面完整性影响的研究进展 [J]. 航空制造技术, 2019, 62(18): 14–22. DOI: 10.16080/j.issn1671-833x.2019.18.014.

    GAO Y K, LIU H F. Research progress of low plasticity burnishing on surface integrity of materials [J]. Aeronautical Manufacturing Technology, 2019, 62(18): 14–22. DOI: 10.16080/j.issn1671-833x.2019.18.014.
    [36]
    孟丽君. 应变速率对强塑性变形晶粒细化的影响[D]. 太原: 太原理工大学, 2006: 27−43.
    [37]
    LI Y S, LI L Z, NIE J F, et al. Microstructural evolution and mechanical properties of a 5052 Al alloy with gradient structures [J]. Journal of Materials Research, 2017, 32(23): 4443–4451. DOI: 10.1557/jmr.2017.310.
    [38]
    LIU W B, JIN X, ZHANG B, et al. A coupled EBSD/TEM analysis of the microstructure evolution of a gradient nanostructured ferritic/martensitic steel subjected to surface mechanical attrition treatment [J]. Materials, 2019, 12(1): 140. DOI: 10.3390/ma12010140.
    [39]
    YANG Y, ZHANG H, QIAO H C. Microstructure characteristics and formation mechanism of TC17 titanium alloy induced by laser shock processing [J]. Journal of Alloys and Compounds, 2017, 722: 509–516. DOI: 10.1016/j.jallcom.2017.06.127.
    [40]
    ZHANG X D, HANSEN N, GAO Y K, et al. Hall-Petch and dislocation strengthening in graded nanostructured steel [J]. Acta Materialia, 2012, 60(16): 5933–5943. DOI: 10.1016/j.actamat.2012.07.037.
    [41]
    CHEN M W, MA E, HEMKER K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300(5623): 1275–1277. DOI: 10.1126/science.1083727.
    [42]
    XIAO X D, SUN Y, YANG Z C, et al. Dynamic response of target with different peening media [J]. Surface Engineering, 2020, 36(4): 386–396. DOI: 10.1080/02670844.2019.1624302.
    [43]
    GURAO N P, KAPOOR R, SUWAS S. Texture evolution in high strain rate deformed Cu-10Zn alloy [J]. Materials Science and Engineering: A, 2012, 558: 761–765. DOI: 10.1016/j.msea.2012.07.112.
    [44]
    PANDEY A, KHAN A S, KIM E Y, et al. Experimental and numerical investigations of yield surface, texture, and deformation mechanisms in AA5754 over low to high temperatures and strain rates [J]. International Journal of Plasticity, 2013, 41: 165–188. DOI: 10.1016/j.ijplas.2012.09.006.
    [45]
    CANOVA G R, FRESSENGEAS C, MOLINARI A, et al. Effect of rate sensitivity on slip system activity and lattice rotation [J]. Acta Metallurgica, 1988, 36(8): 1961–1970. DOI: 10.1016/0001-6160(88)90298-2.
    [46]
    TAO X F, GAO Y K, KANG J M, et al. Softening effects induced by shot peening for an aluminum-lithium alloy [J]. Metallurgical and Materials Transactions A, 2020, 51(1): 410–418. DOI: 10.1007/s11661-019-05506-4.
    [47]
    邹途祥. 纯铝的晶粒细化机制及动态力学性能的研究[D]. 太原: 太原理工大学, 2008: 63.
    [48]
    HEMKER K J. Understanding how nanocrystalline metals deform [J]. Science, 2004, 304(5668): 221–223. DOI: 10.1126/science.1097058.
    [49]
    SCHIØTZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301(5638): 1357–1359. DOI: 10.1126/science.1086636.
    [50]
    YANG C F, PAN J H, LEE T H. Work-softening and anneal-hardening behaviors in fine-grained Zn-Al alloys [J]. Journal of Alloys and Compounds, 2009, 468(1–2): 230–236. DOI: 10.1016/j.jallcom.2008.01.067.
    [51]
    ZHANG W L, HE L J, LU Z G, et al. Microstructural characteristics and formation mechanism of adiabatic shear bands in Al-Zn-Mg-Cu alloy under dynamic shear loading [J]. Materials Science and Engineering: A, 2020, 791: 139430. DOI: 10.1016/j.msea.2020.139430.
    [52]
    KHAN M A, WANG Y W, YASIN G, et al. Adiabatic shear band localization in an Al-Zn-Mg-Cu alloy under high strain rate compression [J]. Journal of Materials Research and Technology, 2020, 9(3): 3977–3983. DOI: 10.1016/j.jmrt.2020.02.024.
    [53]
    NIE Y, CLAUS B, GAO J, et al. In situ observation of adiabatic shear band formation in aluminum alloys [J]. Experimental Mechanics, 2020, 60(2): 153–163. DOI: 10.1007/s11340-019-00544-w.
    [54]
    OWOLABI G M, ODESHI A G, SINGH M N K, et al. Dynamic shear band formation in aluminum 6061-T6 and aluminum 6061-T6/Al2O3 composites [J]. Materials Science and Engineering: A, 2007, 457(1-2): 114–119. DOI: 10.1016/j.msea.2006.12.034.
    [55]
    XIONG Y Y, LI N, JIANG H W, et al. Microstructural Evolutions of AA7055 aluminum alloy under dynamic and quasi-static compressions [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 272–278. DOI: 10.1007/s40195-014-0041-7.
    [56]
    王礼立. 冲击载荷下的材料动态失稳和动态屈服 [J]. 力学学报, 1989, 21(S1): 142–147. DOI: 10.6052/0459-1879-1989-s1-1989-249.

    WANG L L. The dynamic instability and dynamic yield of materials under impact loading [J]. Acta Mechanica Sinica, 1989, 21(S1): 142–147. DOI: 10.6052/0459-1879-1989-s1-1989-249.
    [57]
    高玉魁. 冲击强化对304奥氏体不锈钢拉伸性能的影响 [J]. 材料工程, 2014(8): 36–40. DOI: 10.11868/j.issn.1001-4381.2014.08.007.

    GAO Y K. Influence of impact enhancements on tensile property of 304 austenite steel [J]. Journal of Materials Engineering, 2014(8): 36–40. DOI: 10.11868/j.issn.1001-4381.2014.08.007.
    [58]
    STARMAN B, HALLBERG H, WALLIN M, et al. Differences in phase transformation in laser peened and shot peened 304 austenitic steel [J]. International Journal of Mechanical Sciences, 2020, 176: 105535. DOI: 10.1016/j.ijmecsci.2020.105535.
    [59]
    LUO K Y, LU J Z, ZHANG Y K, et al. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel [J]. Materials Science and Engineering: A, 2011, 528(13–14): 4783–4788. DOI: 10.1016/j.msea.2011.03.041.
    [60]
    MIN N, LI W, JIN X J. α to γ transformation in the nanostructured surface layer of pearlitic steels near room temperature [J]. Scripta Materialia, 2008, 59(8): 806–809. DOI: 10.1016/j.scriptamat.2008.05.038.
    [61]
    CHEN S, MU J, WANG Y D, et al. Formation of omega phase induced by laser shock peening in Ti-17 alloy [J]. Materials Characterization, 2020, 159: 110017. DOI: 10.1016/j.matchar.2019.110017.
    [62]
    LU Y, ZHAO J B, QIAO H C, et al. A study on the surface morphology evolution of the GH4619 using warm laser shock peening [J]. AIP Advances, 2019, 9(8): 085030. DOI: 10.1063/1.5082755.
    [63]
    HSU H C, LIN Y C, WANG S H, et al. Corrigendum to “Inducement of bainite and carbide transformation from retained austenite based on a high strain rate” [Scr. Mater. 62 (2010) 372–375] [J]. Scripta Materialia, 2010, 62(9): 726. DOI: 10.1016/j.scriptamat.2010.01.029.
    [64]
    郎玉婧, 崔华, 蔡元华, 等. 应变诱导析出对7050合金连续热变形组织的影响 [J]. 中国有色金属学报, 2012, 22(10): 2726–2733. DOI: 10.19476/j.ysxb.1004.0609.2012.10.004.

    LANG Y J, CUI H, CAI Y H, et al. Effect of strain-induced precipitation on subsequent hot deformed microstructure of 7050 alloy [J]. The Chinese Journal of Nonferrous Metals, 2012, 22(10): 2726–2733. DOI: 10.19476/j.ysxb.1004.0609.2012.10.004.
    [65]
    WANG Y, LIN D L, LAW C C. A correlation between tensile flow stress and Zener-Hollomon factor in TiAl alloys at high temperatures [J]. Journal of Materials Science Letters, 2000, 19(13): 1185–1188. DOI: 10.1023/A:1006723629430.
    [66]
    POUR-ALI S, KIANI-RASHID A R, BABAKHANI A, et al. Correlation between the surface coverage of severe shot peening and surface microstructural evolutions in AISI 321: a TEM, FE-SEM and GI-XRD study [J]. Surface and Coatings Technology, 2018, 334: 461–470. DOI: 10.1016/j.surfcoat.2017.11.062.
    [67]
    HUANG F, TAO N R. Effects of strain rate and deformation temperature on microstructures and hardness in plastically deformed pure aluminum [J]. Journal of Materials Science & Technology, 2011, 27(1): 1–7. DOI: 10.1016/S1005-0302(11)60017-0.
    [68]
    POUR-ALI S, KIANI-RASHID A R, BABAKHANI A. Surface nanocrystallization and gradient microstructural evolutions in the surface layers of 321 stainless steel alloy treated via severe shot peening [J]. Vacuum, 2017, 144: 152–159. DOI: 10.1016/j.vacuum.2017.07.016.
    [69]
    TAO N R, WANG Z B, TONG W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Materialia, 2002, 50(18): 4603–4616. DOI: 10.1016/S1359-6454(02)00310-5.
    [70]
    YANG Y, ZHOU K, ZHANG H, et al. Thermal stability of microstructures induced by laser shock peening in TC17 titanium alloy [J]. Journal of Alloys and Compounds, 2018, 767: 253–258. DOI: 10.1016/j.jallcom.2018.06.030.
    [71]
    LEE W S, CHEN T H. Rate-dependent deformation and dislocation substructure of Al-Sc alloy [J]. Scripta Materialia, 2006, 54(8): 1463–1468. DOI: 10.1016/j.scriptamat.2005.12.054.
    [72]
    蔡大勇. GH169及GH696高温合金热加工工艺基础研究[D]. 秦皇岛: 燕山大学, 2003: 66−74.
    [73]
    YE C, SUSLOV S, KIM B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening [J]. Acta Materialia, 2011, 59(3): 1014–1025. DOI: 10.1016/j.actamat.2010.10.032.
    [74]
    LIAO Y L, YE C, GAO H, et al. Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: dislocation dynamic simulation and experiments [J]. Journal of Applied Physics, 2011, 110(2): 023518. DOI: 10.1063/1.3609072.
    [75]
    BASAVAKUMAR K G, MUKUNDA P G, CHAKRABORTY M. Influence of grain refinement and modification on microstructure and mechanical properties of Al-7Si and Al-7Si-2.5Cu cast alloys [J]. Materials Characterization, 2008, 59(3): 283–289. DOI: 10.1016/j.matchar.2007.01.011.
    [76]
    MYHR O R, HOPPERSTAD O S, BØRVIK T. A combined precipitation, yield stress, and work hardening model for Al-Mg-Si alloys incorporating the effects of strain rate and temperature [J]. Metallurgical and Materials Transactions A, 2018, 49(8): 3592–3609. DOI: 10.1007/s11661-018-4675-3.
    [77]
    冯飞. 应变速率对GH4169合金拉伸变形行为的影响[D]. 沈阳: 东北大学, 2013: 55−57.
    [78]
    ZHANG P, WANG Y Q, XIE Y N, et al. A study on the dynamic shock performance of 7055-T6I4 aluminum alloy based on experimental and simulation [J]. Vacuum, 2018, 157: 306–311. DOI: 10.1016/j.vacuum.2018.08.042.
    [79]
    YANG Y, WANG H M, ZHOU K, et al. Effect of laser shock peening and annealing temperatures on stability of AA2195 alloy near-surface microstructure [J]. Optics & Laser Technology, 2019, 119: 105569. DOI: 10.1016/j.optlastec.2019.105569.
    [80]
    张孜昭, 许晓嫦, 刘志义, 等. 应变速率对强变形Al-Cu合金中析出相低温回溶速度的影响 [J]. 热处理, 2010, 25(2): 15–18. DOI: 10.3969/j.issn.1008-1690.2010.02.003.

    ZHANG Z Z, XU X C, LIU Z Y, et al. Effect of strain rate on redissolution rate of precipitated phase at low temperature in severely plastically deformed Al-Cu alloy [J]. Heat Treatment, 2010, 25(2): 15–18. DOI: 10.3969/j.issn.1008-1690.2010.02.003.
    [81]
    AN X H, WU S D, WANG Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems [J]. Progress in Materials Science, 2019, 101: 1–45. DOI: 10.1016/j.pmatsci.2018.11.001.
    [82]
    ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. DOI: 10.1063/1.1707363.
    [83]
    LI Y S, ZHANG Y, TAO N R, et al. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation [J]. Acta Materialia, 2009, 57(3): 761–772. DOI: 10.1016/j.actamat.2008.10.021.
    [84]
    CHEN A Y, RUAN H H, WANG J, et al. The influence of strain rate on the microstructure transition of 304 stainless steel [J]. Acta Materialia, 2011, 59(9): 3697–3709. DOI: 10.1016/j.actamat.2011.03.005.
    [85]
    ZHANG H W, HEI Z K, LIU G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia, 2003, 51(7): 1871–1881. DOI: 10.1016/S1359-6454(02)00594-3.
    [86]
    LAINÉ S J, KNOWLES K M, DOORBAR P J, et al. Microstructural characterisation of metallic shot peened and laser shock peened Ti-6Al-4V [J]. Acta Materialia, 2017, 123: 350–361. DOI: 10.1016/j.actamat.2016.10.044.
    [87]
    YMAKOV V, WOLF D, PHILLPOT S R, et al. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation [J]. Nature Materials, 2002, 1(1): 45–49. DOI: 10.1038/nmat700.
    [88]
    LIAO X Z, ZHOU F, LAVERNIA E J, et al. Deformation twins in nanocrystalline Al [J]. Applied Physics Letters, 2003, 83(24): 5062–5064. DOI: 10.1063/1.1633975.
    [89]
    卢磊, 尤泽升. 纳米孪晶金属塑性变形机制 [J]. 金属学报, 2014, 50(2): 129–136. DOI: 10.3724/sp.j.1037.2013.00697.

    LU L, YOU Z S. Plastic deformation mechanisms in nanotwinned metals [J]. Acta Metallurgica Sinica, 2014, 50(2): 129–136. DOI: 10.3724/sp.j.1037.2013.00697.
    [90]
    LU K, LU L, SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324(5925): 349–352. DOI: 10.1126/science.1159610.
    [91]
    马晓光. 层错能对面心立方金属冷拔微观组织及织构演化的影响[D]. 西安: 西北工业大学, 2018: 1−18.
    [92]
    LI X Y, WEI Y J, LU L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals [J]. Nature, 2010, 464(7290): 877–880. DOI: 10.1038/nature08929.
    [93]
    CHEN H, LI F G, LI J H, et al. Hardening and softening analysis of pure titanium based on the dislocation density during torsion deformation [J]. Materials Science and Engineering: A, 2016, 671: 17–31. DOI: 10.1016/j.msea.2016.06.046.
    [94]
    WANG X, LI Y S, ZHANG Q, et al. Gradient structured copper by rotationally accelerated shot peening [J]. Journal of Materials Science & Technology, 2017, 33(7): 758–761. DOI: 10.1016/j.jmst.2016.11.006.
    [95]
    HASSANI-GANGARAJ S M, CHO K S, VOIGT H J L, et al. Experimental assessment and simulation of surface nanocrystallization by severe shot peening [J]. Acta Materialia, 2015, 97: 105–115. DOI: 10.1016/j.actamat.2015.06.054.
    [96]
    FANG T H, LI W L, TAO N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331(6024): 1587–1590. DOI: 10.1126/science.1200177.
    [97]
    LIU X C, ZHANG H W, LU K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342(6156): 337–340. DOI: 10.1126/science.1242578.
    [98]
    WANG C, WANG L, WANG C L, et al. Dislocation density-based study of grain refinement induced by laser shock peening [J]. Optics & Laser Technology, 2020, 121: 105827. DOI: 10.1016/j.optlastec.2019.105827.
    [99]
    ZHOU W F, REN X D, REN Y P, et al. Initial dislocation density effect on strain hardening in FCC aluminium alloy under laser shock peening [J]. Philosophical Magazine, 2017, 97(12): 917–929. DOI: 10.1080/14786435.2017.1285073.
    [100]
    WU X L, YANG M X, YUAN F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14501–14505. DOI: 10.1073/pnas.1517193112.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)

    Article Metrics

    Article views (1218) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return